

I. Grešovnik: Coding standards for COBIK LSS & Laboratory for Multiphase Processes

Programmer’s Guidelines for Development of
Software within COBIK & Laboratory for

Multiphase Processes

Revision 1.3, March 2012.
(Revision 0: Dec. 1010)

Igor Grešovnik

I. Grešovnik: Coding standards for COBIK LSS & Laboratory for Multiphase Processes

i

Contents:

1 Introduction...1

2 Programming Style..2

2.1 General Programming Style.. 2
2.1.1 Prerequisites.. 2
2.1.2 Naming Conventions .. 3

2.2 Documenting Code by Comments .. 3
2.2.2 Documentation Comments for Classes, Methods, Properties, Derived Types, etc. 4
2.2.3 Building Code Documentation for C# development projects ... 7

2.3 Organization of Code... 8
2.3.1 Individual levels of code... 9

3 Team Work ..11

3.1 Common Services... 12

3.2 Structure of the Code Repository ... 13
3.2.1 Checking out the Code.. 14

3.3 Using Subversion Code Repositories.. 16
3.3.1 Precautions to Avoid Obstructing other People’s Work ... 16
3.3.2 Treatment of MS Word Documents.. 22
3.3.3 Troubleshooting Subversion (SVN).. 24
3.3.4 Things You Should not Do or You Should Do with Care... 24

4 Miscellaneous..24

5 Sandbox ...Error! Bookmark not defined.

 1. Introduction Programmer’s Guidelines for Development of Software within COBIK &
Laboratory for Multiphase Processes

1

1 INTRODUCTION

The present document contains coding standards and guidelines for development of software

in Prof. Božidar Šarler’s groups at COBIK & University of Nova Gorica. Beside a set of rules that
we will stick with, the document also provides various information relevant for members of the
team, such as instructions for use of common services (e.g. the Subversion repository).

In order for team work on software development to run smoothly, some minimum set of

standards must usually be set up. The programming style should meet the criteria of good object
oriented design, which must be learned from books and acquired through practical work. Since
programming style is always an individual thing to some extent, it can nod be strictly prescribed.
Beside taking care of the quality of your own product, team work also requires a certain level of
discipline and compliance with a number of logical rules of conduct. Not to go into details with
pretty much obvious stuff, let’s just mention the following one:

If you can’t help, at least don’t obstruct.

The above applies to all forms of not being able to help (lack of knowledge, lack of

willingness to help, sluggishness, exhaustion, bad mood, having own problems - just name it).
Simply keep in mind that the team is not just you – otherwise it wouldn’t be called team.

 2. Programming Style Programmer’s Guidelines for Development of Software within COBIK &
Laboratory for Multiphase Processes

2

Reading:

• Harness the Features of C# to Power Your Scientific Computing Projects

2 PROGRAMMING STYLE

2.1 General Programming Style

It is necessary that all people performing development work on the code maintain some
minimum standard regarding the programming style. Programming style must be in line with basic
rules of object oriented programming (OOP)1 and each developer is responsible for generating
clear, well designed and sufficiently documented object oriented code.

The above request is inevitable in the environment where it is expected that serviceable code
is produced. By definition, such ode must be modular, maintainable, reusable and scalable. It must
be possible for other people to continue or use one’s work without unnecessary overhead in
introducing to the code. By current modern standards, it should be possible for anyone that is skilled
in programming and knows well the subject of the code, to start contributing on the code without
undergoing additional training.

2.1.1 Prerequisites

Anybody involved in code development is responsible for acquiring the necessary general
programming knowledge (e.g. [3]-[5]), solid knowledge about the programming language of choice
(e.g. [6]-[9] for C# and .NET, [10]-[14] for C++) and the development environment used.
Knowledge of tools that are used to support work in the team must also be acquired (such as using
Subversion, see e.g. [15]). Beside that, programming always requires experience that can only be
acquired by practical work. Any individual programmer is therefore also responsible for going into
coding problems persistently and on continuous basis in order to improve skills. Checking out and
expanding illustrative examples obtained form the internet is a very good practice (even the most
experienced programmers do that).

Whenever the course of work allows that, code reviews by more experienced developers
should be practiced. Reviewers’ remarks should be carefully considered and corrective actions
taken if necessary. We want to tend to collaborative organization of work where everybody is open
for questions as well as advice from colleagues.

1 While there exist programming paradigms others than OOP (e.g. functional, logic, imperative, declarative, constraint,
concurrent...), many of which are beneficial in certain areas of application, we will usually not need to adopt paradigms
that lie much beyond OOP.

 2. Programming Style Programmer’s Guidelines for Development of Software within COBIK &
Laboratory for Multiphase Processes

3

2.1.2 Naming Conventions

Names should be chosen to be as descriptive as possible. Often a well written code can be
understood without reading any comments if the names are chosen well. Use long enough names in
order to be descriptive, but don’t exaggerate! Robotic-style names such as “Y_ROL_O” are
outdated and must not be used. Use e.g. RollCenterDistanceY instead1. With the autocomplete
function nowadays available in practically all IDEs, using moderately long names will not affect
your coding speed but will improve readability a lot.

Otherwise, try to stick with naming conventions that are used as standard for the
programming language of choice (see e.g. [1]-[2]). These things are not there to force you into
something but to increase mutual readability of people’s code, although there is no intention to
strictly enforce every detail of universally accepted conventions.

Almost everywhere nowadays there is an agreement that in case of composed names, each
constituent word starts with an uppercase letter, which greatly increases readability. The first letter
of a name may be an exception. In C#, for example, names of local variables (defined within
function bodies) and function arguments should begin with a lowercase letter in order to distinguish
them from public class members. Auxiliary class variables (usually defined as private) should begin
with an underscore followed by a lower case letter; in this way it is difficult to mix them up with
anything that is intended to be less internal. Classes, functions and properties should normally begin
with an uppercase letter. You can make exceptions to this rule when you want to warn users of your
code that there is something special about a given entity (e.g. that a class or a function is defined
only temporarily for testing, which should be documented in comments anyway, but everybody will
more easily focus attention if the name is chosen in a non-standard way).

2.2 Documenting Code by Comments

It is important to document any piece of code in such a way that users as well as other

developers of this chunk of code can easily establish what the code does, how it is used, which is
the meaning of exposed methods, properties and data, etc.

The main way of code documentation will be through comments of classes and methods.

If some method implements complicated algorithms that are not so obvious at a first glance,

you should insert some comments between the code in order to make obvious what given portions
of code do. Try to be concise but descriptive with such comments. You can put such comments in
separate lines above the line or (more often) a group of lines of code that you intend to comment, or
you can add short comments at the end of the line to be commented. With the first style comments it
is common to form full sentences, capitalized and ended by colon. The second style comments are
usually inserted without capitalization and without full sentence structure (such comments are

1 Also a bit peculiar, since in modern programming languages you’ll treat and group vector variables as vectors, and
you will seldom define variables for individual components.

 2. Programming Style Programmer’s Guidelines for Development of Software within COBIK &
Laboratory for Multiphase Processes

4

common e.g. in commenting variable declarations). Comments (of type /* */) can also be inserted
in the middle of lines, e.g. to comment actual function parameters in long function calls.

2.2.1.1 Task Comments

Comments starting with the “TODO” string have a special meaning. They denote tasks that

still need to be done. You can locate such comments in the code by selecting “View/Tasks List”
from the main menu in Visual Studio.

Whenever you haven’t completed something in the code, you should denote this with such

comment. This is a notice to other programmers that things in a given portion of code don’t function
yet completely, that this is known (it is not a bug) and there is intention to return back to it and fix
it.

Typical situations when you need to insert TODO comments are when you still don’t have

solutions to particular problems or when you don’t have time to polish things, and you only bring
the code into a condition when it can do things you need for your current tasks. You should avoid
such situations however, because completed partially finished tasks gets more expensive in the
future.

2.2.2 Documentation Comments for Classes, Methods, Properties, Derived
Types, etc.

See also:

• XML Documentation comments

For commenting constituent parts of code structure, use documentation comments. These

comments are inserted automatically in C# by inserting three slashes (///) and pressing <Enter>.
This inserts a template already containing the most common XML tags used for automatic creation
of documentation and in code balloons shown in the IDE when hovering a mouse pointer over the
appropriate symbol.

2.2.2.1 Denoting Authorship in Documentation Comments

From comments it must be obvious who and when (approximately) designed, modified and
updated specific classes, methods, properties, etc.

Authorship tags should be inserted below the comment that documents the specified symbol

(class, method, property, etc.).

 2. Programming Style Programmer’s Guidelines for Development of Software within COBIK &
Laboratory for Multiphase Processes

5

The general form is

/// $A <author_acronym0> <time01>, <time02> …, <tim e0N>; <author_acronym1>
<time11> <time12> … <time1M>; …

Author acronyms are agreed within the group of developers. They should be short (to save

typing) but distinctive (such that reader of the code can easily figure out who has worked on the
specified piece of code). There must be a file in each code repository containing a table of author
acronyms and corresponding full names (and possibly other personal data), or a reference to such a
table. For example, a root directory of a code repository may contain the file authors.html, with
approximately the following contents:

Author acronyms used within the code comments:
 Igor = Igor Grešovnik, ajgor@lvs.com , tel. (+386) 1 3873 879.
 Robert = Robert Vertnik, r.vertnik@lvs.com , tel. . (+386) 1 3873 878.
 GKosec = Gregor Kosec, r.vertnik@lvs.com , tel. . (+386) 1 3873 877.
 Unknown = any unknown author.

Time marks are composed of abbreviated three letter month marks and two-digit year

written together. Several time marks in a row are separated by spaces. Examples are Jan09 (for
January 2009) or Oct10 (for October 2010). The first time mark must tell when the specific author
has created or firs updated the corresponding item (class, method, etc.), and others denote when
subsequent important updates were made by this author. If there are several authors that were
working on the specific item then they must be listed subsequently, each one with his or her own
time marks, and separated by semicolon (;). Different authors should be listed in chronological
order of their first involvement with the specified item.

For time marks, the special mark ‘xx’ can be used to denote that something was initiated by

somebody before time marks were first inserted in the specific comments. This is used e.g. when
some programmer has coded a given item but he or she didn’t insert any author mark. If you update
the code after that you can insert the author mark where you state yourself and the time(s) when you
modified the code, but before that you should state the original author with “xx” for time mark
(because you don’t know at what times the original author has created and updated the specified
item). If you don’t even know who the original author was, use the “Unknown” keyword in place of
the author’s acronym. You can even use the xx time mark for yourself if you are not sure when you
have created some item.

Examples:

/// $A Igor xx; Robert Nov10 Jan11;

/// $A Unknown xx; Igor Jul09;

/// $A Igor xx Feb09 Oct10 Dec10;

You can also use author marks more loosely in the middle of the code. There you can use

only the $A tag and your author’s acronym followed by a less formal description, e.g.

 2. Programming Style Programmer’s Guidelines for Development of Software within COBIK &
Laboratory for Multiphase Processes

6

i = i+1; // Corrected, $A Robert on January 12 2010 , (orig. i = j+1;)

Author should be stated at least for each class.

Author marks can be omitted in comments of methods, properties, etc. In this case it is

understood that the given method has been created and updated by the same author as the class
containing the method.

It is not necessary to insert time marks for each minor update you make in the code. Be

concise but provide some basic information on when and by whom things were created, modified or
updated. Two basic purposes of author marks are giving you the credit for your work on the code
and to enable users of the code to establish whom they can contact for additional information.

2.2.2.1.1 Examples:

 /// <summary>Interface for classes that implement blocking until a specified condition
is met.</summary>

 /// $A Igor Jun09 Feb10 May10; Stanislav Mar10 Sep10;

 public interface IWaitCondition : ILockable
 {

 ...

 }

From the above example it is seen that Igor has first defined the IWaitCondition interface in

June 2009, and has introduced some substantial modifications in February and May 2010. Stanislav
has also worked on this interface in March 2010 and September 2010.

 /// <summary>Used internally for locking access to internal fields.</summary>

 /// $A Igor xx Apr10 Jun10; Stanislav Mar10 Sep10;

 protected object InternalLock { get { return internallock; } }

From the above example it is evident that Igor has created the property called InternalLock

but didn’t denote when (maybe he inserted the author’s mark only for the containing class). In
March 2010 Stanislav modified the property. He knew that Igor was the original author but didn’t
know when he created the property, so he inserted xx in place of Igor’s time mark, and added his
own mark for his March 2010 modification. In June 2010, Igor modified something else in property
definition and added the appropriate time mark in his part. Then in September 2010 Stanislav
modified another thing and denoted this with an additional time mark in his author’s mark. The
author’s mark evolved as follows:

At unknown time in the past, Igor creates the property but does not insert author’s mark:

 /// <summary>Used internally for locking access to internal fields.</summary>

 protected object InternalLock { get { return internallock; } }

 2. Programming Style Programmer’s Guidelines for Development of Software within COBIK &
Laboratory for Multiphase Processes

7

In March 2010 by Stanislav (creates the author’s mark):

 /// $A Igor xx; Stanislav Mar10;

In April 2010 supplemented by Igor:

 /// $A Igor xx Apr10; Stanislav Mar10;

In June 2010 supplemented by Igor:

 /// $A Igor xx Apr10 Jun10; Stanislav Mar10;

In September 2010 supplemented by Igor:

 /// $A Igor xx Apr10 Jun10; Stanislav Mar10 Sep10;

2.2.2.2 Detailed Guidelines for Author Marks

2.2.3 Building Code Documentation for C# development projects

The documentation is automatically generated from the code and form specially tagged

comments. The documentation resides in the
<.../workspace>/doc/codedoc

directory where <.../workspace> is your workspace directory where you have working copies of the
SVN repository directories.

This directory contains a HTML file with links to documentation and project files and code
for generation of the documentation. It also contains configuration files necessary to automatically
generate documentation by using the appropriate tools.

The documentation itself is excluded from SVN repository because it contains only
automatically generated files, it is large and would load the server unnecessarily.

All instructions for generation of code documentation are included in the html file that
contains links to documentation.

2.2.3.1 Some information information about Doxygen

Remark:
This text is not necessary for understanding how to generate your local version of

documentation. All necessary instructions are in the HTML file containing documentation links.

Doxygen can be used to automatically generate HTML (or other form of) documentation

from the documentation comments in source code. In order to use the tool, you must download the
following software:

• Graphwiz (Windows installers here)
• Doxygen (download here)

 2. Programming Style Programmer’s Guidelines for Development of Software within COBIK &
Laboratory for Multiphase Processes

8

A general overview of how to use Doxygen to generate documentation of your source code

can be found in these tutorials:
• Doxygen - Getting started
• Doxygen Manual

In order to create a new configuration file for another documentation project, either copy

another configuration file and change the relevant entries that must be different for new
documentation, or create a new configuration file by typing the following command in the
command prompt:

doxygen –g <filename>

Configuration files can be easily edited by any text editor. Alternatively, the graphical front-

end can be used by
doxywizard <filename>

It is better to edit the configuration files directly by a plain text editor, however, because dialog
boxes for choosing files and directories don’t work very well in doxywizard (e.g. it is not straight
forward to choose relative paths or to start with existing path).

After a configuration file is generated, it can be run in order to generate the documentation.

This is done by typing the following command:
doxygen <filename>

2.3 Organization of Code

Code must be organized into a logical and clear hierarchical (tree-like) structure.

There will be several levels of code:

• Testing code that is not yet mature for inclusion in official repositories
• External general purpose libraries
• Internal basic libraries (those for which the group holds complete control over

development)
• Domain specific libraries
• Application specific libraries
• Applications
• Customized applications - to meet specific customer requirements

The code in each level will also be structured with respect to platform requirements. For

example, C# code that uses libraries available on Windows but not generally available on the Mono
platform should be packed to separate libraries that can be easily excluded from the repository when
libraries and applications are ported to another platform (such as Linux cluster or a Unix-based
supercomputer).

 2. Programming Style Programmer’s Guidelines for Development of Software within COBIK &
Laboratory for Multiphase Processes

9

2.3.1 Individual levels of code

2.3.1.1 External general purpose (basic) libraries

These libraries should be included in a special location, which is many times close to the
location of internal basic libraries, where all higher level code can access them.

These libraries are considered something you can take and use without thinking too much
how it is structured. In order to be treated in this way, these libraries must satisfy certain conditions:

• Their domain is not very specific and one can expect that several applications can
benefit from use of the libraries (not necessarily at this moment, but maybe later).

• They must be stable enough (well tested, with few major bugs, with well established
and – by expectations - relatively constant interface).

• They must be easily transferrable across different platforms.
• Their license must be such that it does not restrict any intended way of use1.

2.3.1.2 Internal basic libraries

These are libraries that are developed or co-developed in-house and satisfy similar
conditions as the external basic libraries. It is usually beneficial to open development of such
libraries (if this would not incur additional housekeeping costs) to attract development potential or
additional users that may find more bugs or contribute useful advice for enhancement or addition of
features.

2.3.1.3 Domain specific libraries

These are libraries for which is clear that they can only be used (within our group) in narrow
domains, such as libraries of CAD tools or finite element libraries or utility libraries for meshless
methods. It is advisable to design a branched (but not too much) directory structure for development
code in such a way that these libraries are not mixed with more basic libraries, but are close only to
the code that will actually use them. In this way developers will not need to download everything
from code repositories when working on specific applications and the code will be better structured.

2.3.1.4 Application specific libraries

Some utilities will be used only for specific individual applications. In OOP approach, code
should be well structured at every level, therefore it is usually a good practice to separate even
individual applications into smaller entities – at least one library module that can be compiled
separately, and the top-level manipulation part.

1 These conditions usually imply free open source license that is not GPL.

 2. Programming Style Programmer’s Guidelines for Development of Software within COBIK &
Laboratory for Multiphase Processes

10

2.3.1.5 General applications

These are general applications such as optimization server or a mesh-free analysis
application. Things as simulators can often consist of a number of separate applications such as pre-
processor, pure analysis module (that just reads the input, performs simulation according to that
input, and outputs the required results).

Many times these connected groups of applications will share a large portion of common
library code and pure application code will be pretty small. When the code is well organized in such
hierarchical way it is easy to produce customized applications (e.g. demonstration software or
software tailored to customer or project needs) atop of the systematically improved and extended
codebase.

2.3.1.6 Customized applications

These are specialized applications that are created for a given special purpose, such as on
order from an industrial customer, for a project, or to widely distribute a demonstration code that
popularizes work of the group.

In the case of commercial software for a specific customer, beside using extensive portions
of common code base (libraries and sometimes also some general applications), these applications
may consist of extensive portions of code that is produced specially for the specific application.
Many times such code may contain things that are considered a trade secret of the customer,
therefore the top-most part of such code must be clearly separated form other code (sometimes it is
required that access to the code is granted in a very restrictive basis).

2.3.2 Organization of Code Projects

Code projects must be organized in such a way that people can easily work in team, projects
are adapted to storage in central SVN repositories, code can be easily tested, project data is
separated from code, code is easily transferable between different computers and even between
different platforms, etc.

In general, the following criteria should be met by code organization:
1. When code is checked out on a different machine, it can be readily compiled, linked

and run without any adjustments on the local system.
2. Even when the code is checked out on a computer with different platform than the

one the code was created on, it should be easy to make it work. This should not
require more than installation of the appropriate development environment and
execution of some scripts.

3. Nothing produced by compiling or running the code should be committed to SVN.
4. Tests on the code can readily be performed by anyone.

In order to easily meet the above criteria, we will stick with some simple rules outlined

below.
All the code must be put in a single directory named workspace. Each code project must

have a specified location relative to the workspace directory. In this case, relative references

 3. Team Work Programmer’s Guidelines for Development of Software within COBIK &
Laboratory for Multiphase Processes

11

between any two parts of the code will always work. Where to put the workspace directory on the
local disk is a personal choice of each developer. It must not matter.

If we need some data for testing the code, this data should reside in a directory named data
somewhere within the code project directory. This data should be put on repository.

If testing (running) the code generates any data on the disk, such data should be put into the
directory named testdata and located somewhere in the related project directory. This directory
should not be put to SVN.

All paths for compiler and linker must be relative. When using external libraries, all the
necessary files (e.g. .dll, .lib) must be stored in some directory named bin. Since these files are
platform dependent, there must be some other directory containing these files for all platforms in
use, and shell scripts must be provided for each platform that copy the appropriate files to that bin
directory. In this way, when checking out the code on a different platform, one will only need to
check out everything necessary and run the script that copy binary files for the appropriate platform
to the bin directory where they are referenced by the code.

When using different integrated development environments, there must be only one source
code for all IDEs in use, i.e, the same code will be referenced form different IDEs in different ways
(dependent on the IDE). However, auxiliary files specific to different IDEs will be different, and
they will be included in SVN repository.

Any production-level code (i.e. code used for anything else than just for testing and
demonstration) must be designed in such a way that its data obtained from the disk can be located
anywhere on the file system where user has sufficient permissions. It is allowed, however, that data
location for a more complex application or set of applications is specified by a designated system
variable. In particular, location of the data must be unrelated to location of the application’s
executable or libraries (failure to comply with this rule points to extremely unprofessional and
ignorant attitude of developers and project leads). When code uses more complex but relatively
fixed data structure, it is recommended that all data is located in a directory tree with prescribed
structure (or with some mechanisms of dynamic pointing to relative locations), such that specifying
the location of the data root directory uniquely defines location of all other data obtained by
application from the hard disk.

For internal use of the developed software, there should be means of quickly generating test
applications and sharing these applications and data between team members. Larger software
projects should include standardized subprojects for generating such ugly hard-coded applications.
To share data for internal projects, the directory named workspaceprojects will be used. This
directory must always be located besie the workspace directory (i.e. contained in the same
directory). In this way, relative paths from code to data in workspaceprojects will be constant,
which will enable easy sharing the project data and working on the same projects by team members.
Subdirectories of workspaceprojects that are shared between two or more team members can be put
to SVN.

3 TEAM WORK

 3. Team Work Programmer’s Guidelines for Development of Software within COBIK &
Laboratory for Multiphase Processes

12

3.1 Common Services

Software development in a team can not be imagined any more without at least two
technical services:

• Revision control system (“Subversion” in our case)
• Issue tracking system (“Bugzilla” in our case)

Revision control systems enable multiple developers to work concurrently on the same code,

submit their modifications to a central repository, update their working copies of code with
modifications done by the others, revert unintended or adverse changes, restore any file to any
previous revision stored in the central repository, etc.

Issue tracking systems enable reporting bugs and other issues related to software or team
work in general, defining tasks, tracking status of individual tasks, assigning and re-assigning tasks,
creating reports, sending filtered notifications (e.g. via e-mail) about any changes in the status of
work, etc.

This section contains basic information for access to common services. Subsequent sections

provide more detailed information and describe rules that must be obeyed when using the services.
Table 1 contains user data (except passwords) for common services. Below there is detailed
information for accessing common services.

Note: Access to the common services is currently possible only from within the local
network.

3.1.1.1 Subversion access:

Central code repository in a Subversion server can be accessed by clients such as
TortoiseSVN or AnkhSVN. Details about how to copy software from central repository to your
working copy can be found in subsequent Sections, as well as addresses of individual directories.
Base access to the repository is through the following address:

• https://192.168.1.34:8443/svn/
Type this in the address bar of your browser and press <Enter>. A log in window appears where
you can type in your username and password. When you log in, you will first see a list of
repositories, which appear as directories that you can browse. Note that actual useful directories can
be embedded in several levels of “trunk/” directories. This is so because of the way in which
Subversion organizes data, and which enables users to create branches on which they can
experiment without disrupting work of the others.

3.1.1.2 Bugzilla access:

Bugzilla can be operated entirely via a web interface that is manipulated in your web
browser. In addition to that, notifications via e-mails can be set up for different kinds of events
(related usually to changes of status of bugs/tasks). Below is the address for accessing Bugzilla
services (currently this does not work):

• http://192.168.1.34:8080/

 3. Team Work Programmer’s Guidelines for Development of Software within COBIK &
Laboratory for Multiphase Processes

13

Load this address in a web browser and click “Log In”. In the search field you can quickly
search for tasks, bugs and other issues of your interest.

Table 1: User data. Username is used for accessing the Subversion repository and should be
the same as username used for computer accounts. In Bugzilla, an e-mail address is used as user
name. Author’s acronym is a mark that is used to denote authorship of classes, methods, etc.,
within the source code and in some other locations such as discussion forums.

Name Username Author’s

acronym in
code

e-mail for Bugzilla

Božidar Šarler bozidar Bozidar bozidar.sarler@ung.si
Igor Grešovnik igor Igor igor.gresovnik@cobik.si
Robert Vertnik robert Robert robert.vertnik@ung.si
Gregor Kosec kosec Kosec grega.kosec@gmail.com
Katarina Mramor katarina Katarina kmramor@gmail.com
Gregor Košak gkosak Gkosak gregor.kosak@gmail.com
Agnieszka
Lorbiecka

agnieszka Aga zuzanna1981@wp.pl

Umut Hanoglu umut Umut Umut.Hanoglu@ung.si
Qingguo Liu liuqingguo Qliu liuqingguo1980@gmail.com
Tadej Kodelja tadejk Tako78 tadej.kodelja@cobik.si

3.1.1.2.1 See also:

• Revision control
o Subversion

• Issue tracking system
o Bugzilla
o Trac

3.2 Structure of the Code Repository

Development code is organized in the following structure:

• base – base libraries
o iglib – the basic utility library (covers all basic and general utilities and

functonality that could be used among different application)
• simulation simulation framework

 3. Team Work Programmer’s Guidelines for Development of Software within COBIK &
Laboratory for Multiphase Processes

14

• testdevelop test projects for prototyping and testing of ideas
o develop_nafems – first attempt to design a general simulation framework,

based on Robert’s NAFEMS1 example.
o example_nafems – Robert’s code for the NAFEMS simple heat conduction

example
• doc - documentation

You should store these directories with the same relative paths in a separate directory,

preferably named workspace.

3.2.1 Checking out the Code

All directories form the SVN server should be checked out to standard locations within the
workspace directory that contains your local working copies of code projects, documents, etc. Table
2 lists addresses of principal directories in the SVN repository and their corresponding locations in
the local workspace directory. Each principal directory listed in the table must be separately
downloaded (checked out) from the repository, and its containing directory must first be created
within the workspace directory if it does not exist. When checking out a directory, check carefully
that you insert the correct URL or repository and, in particular, the correct checkout directory. A
frequent error is that one check outs something into a directory that is already under version control
(such directories contain a subdirectory named “.svn”, which can not be seen in Windows Explorers
unless you switch on the option for displaying hidden files). Such errors can lead to complications
that are hard to resolve.

In order to perform the SVN checkout, you must install TortoiseSVN (available for
Windows OS; on other systems you must use some other SVN client such as SmartSVN).

Procedure for checking out project directories form the SVN server is as follows:
• At suitable location, create the directory that will contain your working copy of the

code. It should preferably be named workspace and should not contain other things.
• Open the SVN repository browser. Open Windows Explorer, right-click on the

workspace directory, select SVN Checkout.
• In the Checkout box that appears, URL of the directory location in the SVN

repository and the checkout directory (the directory in which contents are saved)
must be specified. See Table 2 below for a list of URLs and locations within the
workspace directory.

o Warning: be very careful when specifying the checkout directory. Wrong
paths will make relative paths between referenced projects invalid.

• Click OK. The complete directory structure of the chosen directory will be
downloaded from SVN repository to the directory of choice. Wait until transfer
completes and click OK again.

1 NAFEMS - organization that sets and maintains standards in computer-aided engineering analysis (especially the
finite element analysis).

 3. Team Work Programmer’s Guidelines for Development of Software within COBIK &
Laboratory for Multiphase Processes

15

Table 2: Repository URLs and corresponding checkout directories.

URL of repository Checkout directory
https://192.168.1.34:8443/svn/doc/doc/trunk/lab/trunk …\workspace\doc\lab
https://192.168.1.34:8443/svn/doc/doc/trunk/codedoc/trunk …\workspace\doc\codedoc
https://192.168.1.34:8443/svn/archive/doc/trunk/literature/trunk ...\workspace\doc\literature
https://192.168.1.34:8443/svn/develop/base/trunk/iglib/trunk …\workspace\base\iglib
https://192.168.1.34:8443/svn/develop/base/trunk/igsolutions/trunk …\workspace\base\igsolutions
https://192.168.1.34:8443/svn/develop/develop/trunk/lib/trunk …\workspace\develop\lib
https://192.168.1.34:8443/svn/develop/develop/trunk/shell/trunk …\workspace\develop\shell

https://192.168.1.34:8443/svn/test/tests/trunk/csharp/trunk/ …\workspace\tests\csharp
https://192.168.1.34:8443/svn/test/tests/trunk/testsvn/trunk/ …\workspace\tests\testsvn

In addition, there is a separate repository in which the C# course material is located. The

address is
https://192.168.1.34:8443/svn/test/tests/trunk/csharp/trunk/
If you would like to use this material, you can check it out into the workspace directory (e.g.

to …\workspace\tests\csharp), but you can also use some other directory of your choice.
There is also a directory where you can practice use of the Subversion:
https://192.168.1.34:8443/svn/test/tests/trunk/testsvn/trunk
Read the readme file before using this directory.

A separate repository named supplementary_projects is prepared for project data directories

contained in the workspaceprojects directory (this directory must be contained in the same directory
as the workspace directory). Each user and group has its own directory in this repository. Address
of these directories are of the form

https://192.168.1.34:8443/svn/supplementary_projects/workspaceprojects/trunk/<user>/trun
k ,
where <user> is the name of the user or group that owns the directory. Each user can put his/her
project directories that are included in the workspaceprojects directory to the appropriate directory
in the SVN repository. Local relative path within the workspaceprojects directory is specified by
the creator of project directory. Each of these directories should be checked out separately and not
as part of a larger directory structure. For example, Tadej has created and uses a project directory at
the location

.../workspaceprojects/12_02_paper_neural_process_chain_model
He has imported this directory to SVN repository at the location

https://192.168.1.34:8443/svn/supplementary_projects/workspaceprojects/trunk/tadej/trunk/
12_02_paper_neural_process_chain_model

 3. Team Work Programmer’s Guidelines for Development of Software within COBIK &
Laboratory for Multiphase Processes

16

3.3 Using Subversion Code Repositories

Although Subversion is a stable and mature revision control system, there are situations

where use of the system is troublesome and where some conflicts are difficult to resolve. This
Section describes how the system should be used in order to avoid causing problems to other
programmers and to yourself. Use of revision control systems requires some discipline and you
should always think whether your actions could cause problems to other developers.

3.3.1 Precautions to Avoid Obstructing other People’s Work

You should never check in parts of code unless all dependent projects can be compiled!

When all projects dependent on code that you’ve modified are compiled without

errors, you should check in all modified code at once.

You should also not check in parts of code for which you know that they don’t function

correctly. If your modifications caused malfunction of some code then you should correct this first
and then check in.

When you intend to work on parts of code for which it is likely that others will also work on,

you should try to find out if somebody else intends to work on particular parts of code at that time.
In such a case try to coordinate with these people in order to avoid conflicts that are difficult to
resolve.

When you work on critical parts of cod on which a lot of other code depends, you should

inform others about that. The same is true when you intend to do any major refactoring. In such a
case you might consider creating a new branch, work on it and merge it with the trunk when you
finish your work.

Avoid locking files! Locking is reserved for really rare situations and you should almost

never use it. When a file is locked, nobody else but the owner of the lock can commit changes to
that file (others can still read the file from the central repository).

Locking can provide some protection against difficult merge conflicts when a user is making
radical changes to many sections of a large file or group of files. However, if the files are left
exclusively locked for too long, other developers may be tempted to bypass the revision control
software and change the files locally, leading to more serious problems.

3.3.1.1 Ignore Lists for Project Directories

In your working copy (i.e. copy on your local disk that is under version control) of project
directories, you should set ignore property for *.exe, *.dll, *.pdb, *.suo *.bak files and for bin, and

 3. Team Work Programmer’s Guidelines for Development of Software within COBIK &
Laboratory for Multiphase Processes

17

obj and testdata directories. By internal convention, testdata is the name used for directories
where test data is kept, which is generated programmatically and may change frequently because
tests are performed on that data.

The purpose of using ignore patterns is two-fold:
• Other users won’t override your personal settings (e.g. those related to your platform

specifics or those defining the layout of your development environment.
• Time is saved because the large generated files such as .obj, .exe, .dll, etc., are not

transferred over network and copied each time you are performing commits and
updates.

This can best be done in TortoiseSVN on Windows. Procedure is as follows (just make sure
first that you have TortoiseSvn installed, this is seen in context menu when you right-click on any
directory or file):

• Open root directory of the project or solution in Windows Explorer. The directory
should be marked by one of the SVN icon overlays, e.g. a green hook or a red
exclamation mark.

• Right-click on the root directory where project is installed, and select
TortoiseSVN/Properties from the context menu.

• In the Properties box that opens, do one of the following:
o If the box already contains the property named svn:ignore then just double-

click the corresponding enrty.
o If the box does not contain svn:ignore then click New, then select svn:ignore

under Property name, and insert values under Property value.
• In the Edit Properties box that opens, add corresponding entries to be added to

ignore list under Property value. You can separate entries by spaces or newlines.
o Add your ignore pattern, e.g.: *.dll *.exe *.pdb *.suo *.bak */bin */obj

• Check the Apply properties recursively box and click the OK button.
• Click the OK button again (in the Properties box).

If you browse your projects’ working copy, all the above mentioned files that should be

ignored by SVN should not have TortoiseSVNs’ icon overloads visible in explorer. If this is not
true for some files, you should check if the containing directory has the svn:ignore property set.

Warning:
Do not add *.exe and *.dll to ignore lists for directories that are intended for third party

libraries and applications. Such directories should be separated from root directories of
development solutions.

3.3.1.1.1 Setting up Global Ignore

You can set a global ignore pattern In TortoiseSVN. The global ignore pattern will prevent

the specified files showing up e.g. in the commit dialog. Files specified here will also be ignored in
import. The pattern you set up here will not affect other users because it is not versioned and will
exist only in your personal settings for the TortoiseSVN application.

 3. Team Work Programmer’s Guidelines for Development of Software within COBIK &
Laboratory for Multiphase Processes

18

The global ignore pattern should be more restrictive than the ignore patterns that you set up

on different directories because it will be used for committing and importing files to the central
repository for all different projects, not only specific ones.

The procedure is as follows:

• Open Windows Explorer
• Press Alt-F for the File menu, then choose TortoiseSVN/Settings.
• In the Settings box, choose general and then insert the pattern under Global ignore

pattern.
o Example of global ignore pattern: *.bak bin obj *.suo. Usually some pattern

is already set up when you install TortoiseSvn.

3.3.1.1.2 More on Ignore Patterns for C# Projects
Dependent on the type of the projects, one may use different ignore patterns.
One simple but probably quite effective global ignore pattern I’ve found on the internet is

the following:
• *\bin* *\obj* *.suo *.user *.bak **.ReSharper** **_ReSharper.** StyleCop.Cache

A more elavborated pattern:
• *.o .lo .la ## ..rej .rej .~ ~ .# .DS_Store thumbs.db Thumbs.db *.bak *.class *.exe

*.dll *.mine *.obj *.ncb *.lib *.log *.idb *.pdb *.ilk .msi .res *.pch *.suo *.exp .~ .~
~. cvs CVS .CVS .cvs release Release debug Debug ignore Ignore bin Bin obj Obj
*.csproj.user *.user ReSharper. *.resharper.user

In ignore patterns, different items must be separated by spaces. Patterns use filename

globbing where files can be specified by using wildcards. The following characters have special
meaning:

• * - matches any string of characters, including the empty string
• ? - matches any single character
• ;[…] - matches any one of the characters enclosed in the square brackets. A pair of

characters separated by ‘-’ matches any character lexically between the two
characters (including the characters themselves).

Pattern matching is case sensitive.

You should not include path information in patterns. Pattern matching is intended to be

used against plain file names and directory names. For example, if you want to ignore complete bin
directories, just add bin to the ignore list.

If you want for example exclude debug directories included in bin directories, but not debug
directories included elsewhere, you should achieve this by using the svn:ignore property ona ll bin
directories. According to documentation, there is no reliable way to achieve this using global ignore
patterns.

 3. Team Work Programmer’s Guidelines for Development of Software within COBIK &
Laboratory for Multiphase Processes

19

3.3.1.2 Copying Directory Structures to a Location under Version Control

Say you have a working copy of a complex source code, possibly containing several

solutions and a large number of projects. Then you want to include existing branched directory
structure at the desired location within that working copy and put it under version control.

Rule of thumb is that you should not (recursively) copy the directory directly into the
working copy. You should instead copy it on the subversion server (e.g. by using a TortoiseSVN
repository browser) and get it into the working copy via SVN update.

Recommended steps are the following:

• Copy the directory to the appropriate location within the central repository on the
SVN server that manages your working copy.

o In Windows Explorer, open the directory that you want to include in the
working copy (you must first have TortoiseSVN installed).

o Open Tortoise’s Repository browser (in Windows Explorer, right-click on
some directory, choose TortoiseSVN/Repo-browser).

o In repository browser, navigate to the location where you want to include
your directory structure.

o Copy the directory to the server by dragging it from Windows Explorer to
the appropriate location in repository browser.

• Update working copy (In TortoiseSVN, right-click on some directory that will
contain the added directory structure, choose TortoiseSVN/). The newly included
directory structure should be copied to the corresponding location in the working
copy.

• Recursively add the svn:ignore property on the newly added directory structure.
o In windows Explorer, right-click the root of the newly included directory,

choose TortoiseSVN/Properties, and recursively add the svn:ignore list
(details are in Section 3.3.1.1).

Important remarks:
If you are copying the directory that was previously under source control, you should create

a copy and recursively remove all .svn subdirectories from the directory structure.
It may be a good idea to remove user specific and generated files before including the

directory, such as *.exe, *.dll, *.pdb, *.suo. Be careful though, since some directories may contain
.exe and .dll files that are not generated by the contained projects but are third party libraries and
applications referenced by the directory.

When copying a small number of files in a single directory, it may be easier to copy them to
the working copy and then add them to SVN’s central repository. This is the case only when it is
easy to locate and select all new files in Windows explorer. In this case, the procedure is as follows:

• Copy files to the appropriate location within the working copy.
• Select the newly copied files in Windows Explorer.
• Add files to repository (right-click selected files, choose TortoiseSVN/Add, confirm

addition).
• Commit addition (right-click selected files, choose SVN Commit).

 3. Team Work Programmer’s Guidelines for Development of Software within COBIK &
Laboratory for Multiphase Processes

20

• You can check in repository browser whether the files were actually added to the
central repository (right-click the directory in the working copy where copied files
are located, select TortoiseSVN/Repo-browser). In repository browser, refresh the
view first (right-click a directory, choose Refresh), otherwise the changes may not be
visible.

3.3.1.3 Modifying Solutions under Version Control in the IDE without SVN Plugin

Sometimes you will work with integrated development environment (IDE) that does not
have a SVN client integrated. For example, you can not integrate SVN clients with Visual Studio
Express because the express editions do not support plug-ins.

In such a case, changes in solutions and projects will not be automatically reflected in the
SVN structure of the working copy, e.g. new files will not be versioned automatically. You will
have to put changes under version control manually.

3.3.1.3.1 Adding New Projects or Files within Projects
When a new project is added, do the following:

• Save changes in your IDE in order to make sure that the changes are actually
reflected in the file system.

• Check for changes in a directory that for sure contains all newly added files (right-
click the directory, choose TortoiseSVN/Check for modifications). If you are not
sure, do it on the root directory of your working copy (this will take longer and it
may be more difficult for you to filter files that are added as a consequence of your
changes).

• In the Working Copy box that opens, check the “Show unversioned files” option.
• Add and commit new files:

o Select all files that are related to addition of the new project (they should be
listed with non-versioned status). Right-click the selected files and choose
Add, then click OK.

o Right-click the files again, select Commit.
• Commit changes on the rood directory containing the whole solution (right-click the

directory in Windows Explorer, select SVN Commit). You must do this because the
solution file also changes when a new project is added.

3.3.1.3.2 Adding a New File within an Existing Projects
When just adding a file to an existing project that is already under version control, the

procedure is similar as when adding a project (Section 3.3.1.3.1) except that you can omit
committing the root directory (since all changes are limited to project directory, unless you have re-
defined the project directory structure in such a way that it deviates from the default one).

3.3.1.3.3 Renaming Files within an Existing Projects

 3. Team Work Programmer’s Guidelines for Development of Software within COBIK &
Laboratory for Multiphase Processes

21

When renaming a file, the procedure is similar as when adding a file, except that you must
now do two things: remove the file with the old name and add the file with the new name. Similar
can be carried out when renaming multiple files or when renaming a project.

• Save all in the IDE such that all changes are reflected in the file system (if you use
Visual studio, press Ctrl-Shift-S).

• Check for changes in the directory that for sure contains all renamed files (right-
click the directory in Windows Explorer, select RortoiseSVN/Check for
Modifications).

• Check the “Show unversioned files” option. File(s) with original name will appear
with the “missing” status. . File with new name will appear with the “non-versioned”
status.

• Right-click the missing file (original name(s)) or select multiple files and right-click
selection, choose Delete.

• Right-click the non-versioned file (new name(s)) or select multiple files and right-
click selection, choose Add.

• Click the OK button twice.
• Perform Commit on the directory containing all renamed files (right-click the

directory in Windows Explorer, choose SVN commit).
• Just for any case, you may check the state of the central repository in a repository

browser (right-click the directory in Windows Explorer, choose TortoiseSVN-Repo-
browser). Don’t forget to refresh the directory of interest (right-click, Refresh).

3.3.1.3.4 Deleting a Project or a Directory Structure
When removing a project in Visual Studio, the project is removed form solution but files are

not actually deleted. You just need to commit changes in the solution file in this case, and you must
manually remove project directory if this is what you want to do.

When you recursively delete a complete directory sub-structure from your working copy,

you should carry out the following procedure:
• Check for modifications in the directory that contained the deleted directory (right-

click the directory in Windows Explorer, choose TortoiseSVN/Check for
modifications).

• If there are too many files listed in the “Working Copy” box that opens, you can
uncheck the “Show unversioned files” (since the directory that you have deleted was
managed by SVN).

• Right-click the deleted directory (if you have deleted multiple directories, select
them first and then right-click the selection; the directory should be listed with the
“missing” status), choose “Delete”.

• Right-click the directory (or selection in case of multiple directories), choose
Commit.

• Confirm by clicking the OK button twice.

Remark:

 3. Team Work Programmer’s Guidelines for Development of Software within COBIK &
Laboratory for Multiphase Processes

22

Sometimes it is enough to perform Commit on the directory that contains the deleted
directory (or directories).

3.3.2 Treatment of MS Word Documents

When you modify a MS Word document from the SVN erepository, you must ensure that
modifications are added to the repository document and that modifications added by other users a
the time you were editing your local working copy of the document are not overridden by you.
Follow this procedure in order to add contents to a Wpord document:

1. Update your working copy of the document. In Windows Explorer, open the

directory containing the working copy of the document. You must have
TortoiseSVN installed and the “doc” subdirectory downloaded (checked out) from
the central repository to your workspace directory (the local directory on your disk
containing working copies of repository files; see remarks below). Right-click the
document and choose “SVN Update” from the menu, confirm by clicking the OK
button.

2. Open and edit the document (your working copy).
3. Save and then close the document when finished.
4. Commit the changed document back to the central repository. In Windows Explorer,

open the directory containing the working copy of the document. Right-click the
document and choose “SVN Commit” from the menu. If commit fails then follow
the conflict resolution procedure described below.

When somebody else has committed changes to the document in the time between your last

update and commit attempt, the commit will fail because the document is in conflicted state (you’ll
get a descriptive error message). In this case, follow the resolution procedure below:

1. Perform update on your working copy of the document (right-click in Windows
Explorer, select “SVN Update”). Update will also fail but you have to perform it in
order to proceed.

2. Try to perform commit again (right-click in Windows Explorer, select “SVN
Commit”). ”Commit” window will open where the document is shown in red and
tagged “conflicted” under the “Text status” column.

3. Right-click the document in the ”Commit” window and select “Edit conflicts”. This
will open a copy of the document where changes between the document in the
repository and your working copy are shown, ready for rejecting and accepting
individual changes.

4. Use buttons to accept or reject changes () in order to merge your
modifications into the working copy, then save the document at the location of your
working copy. You can either override (replace) the working copy or (for better
safety) use “Merge changes into the existent file”.

 3. Team Work Programmer’s Guidelines for Development of Software within COBIK &
Laboratory for Multiphase Processes

23

• You must accept or reject all changes before overriding the working copy with
the open document.

• Reject all changes that mean deletion of stuff you have entered (changes are
marked with respect to the repository document, not your working copy,
therefore your changes are marked as deletions, which you must reject).

• Accept all changes that are not yours, since these are changes that were
committed by other users while you have edited the document.

5. Right-click the document in the ”Commit” window again, but now select “Resolve
conflict using ‘mine’”. Make sure that the document with accepted and rejected
changes has been solved as working copy before you do that (otherwise you can
override somebody elses work)!

6. Click OK in order to commit the document.
• In rare occasions it can happen that this last commit fails in spite of the fact that you

have resolved the conflict by using your changes. This happens e.g. if during the
(usually short) time between resolution and commit somebody else commits changes
to the document. In such a case, just repeat the resolution procedure:

a. Perform SVN Update on the document, followed by SVN Commit.
b. In the commit window, perform ”Edit conflicts” on the document.
c. Accept and reject changes as appropriate, and overwrite the working copy

with the resulting document.
d. In the commit box, perform “Resolve conflict using mine” on the document.
e. Commit the document.

Remarks:

In order to download the “doc” directory from the central repository into your workspace

directory (i.e. to create a working copy of the directory), do the following:
• Open the workspace directory in Windows Explorer. The workspace directory is the

location on your local disk where you decide to store working copies of the
repositories’ files (e.g. d:\userss\workspace).

• In Windows Explorer (you must have TortoiseSVN installed), right-clik on an empty
space within the workspace directory, and choose “SVN Checkout” from the menu.

• Under “URL of repository”, insert
“https://192.168.1.34:8443/svn/doc/doc/trunk/lab/trunk/” .

• Under Checkout directory, insert “<workspace_dir>\doc\lab” and press the OK
button. You have created a working copy of the “doc” directory from the repository.
The document of interest is located in
“…\doc\discussions\choice_of_simulation_platform.doc”.

With the above procedure, it is recommendable to make an additional local copy of your

working copy of the document. If you override your changes in the working copy, you can still
merge these changes into it from this additional copy.

 4. Miscellaneous Programmer’s Guidelines for Development of Software within COBIK &
Laboratory for Multiphase Processes

24

3.3.3 Troubleshooting Subversion (SVN)

SVN clients are sometimes pretty capricious. Because it is easy to do something wrong
when you are not completely familiar with some (possibly buggy) features, we will here maintain a
collection of unusual behavior and possible remedies.

Remember, your first care when using SVN is not to make something that would cause

problems to other users!

3.3.3.1 Problems with TortoiseSVN

Sometimes you can not commit some items. It may help if you perform Update on these

items first, and try to commit again. It sometimes helps.
If you get a message that you don’t have permission to commit changes, contact SVN server

administrator to check whether there is actually something wrong with permissions!

3.3.4 Things You Should not Do or You Should Do with Care

Do not delete files directly from repository! Clients might have problems with this. If you
really need to do something like this, ask administrator to do it!

See also:

• Version Control System, a Wikipedia article
• Apache Subversion, a Wikipedia article
• Apache Subversion, official home page
• Version Control with Subversion, a book.
• Comparison of Subversion clients, a Wikipedia article
• An Introduction to Subversion (centered around use of TortoiseSVN)
• TortoiseSVN Tutorial
• TortoiseMerge Tutorial

4 M ISCELLANEOUS

 4. Miscellaneous Programmer’s Guidelines for Development of Software within COBIK &
Laboratory for Multiphase Processes

25

References:

[1] Doug Lea: Draft Java Coding Standard. Electronic document, available at
http://g.oswego.edu/dl/html/javaCodingStd.html.

[2] C# Coding Standards & Best Practices. Electronic document, available at
http://www.dotnetspider.com/tutorials/CodingStandards.doc.

[3] Object-oriented programming on Wikipedia. Read also all pages that are linked from
introduction! http://en.wikipedia.org/wiki/Object_oriented_programming.

[4] Design pattern (computer science) on Wikipedia.
http://en.wikipedia.org/wiki/Design_pattern_%28computer_science%29.

[5] Model–view–controller on Wikipedia. An important example of design pattern.
http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller.

[6] Faraz Rasheed: C# School. An excellent book for learning C#, available at
http://www.programmersheaven.com/ebooks/csharp_ebook.pdf.

[7] MSDN .NET (includes searchable reference documentation for c#). Available at
http://msdn.microsoft.com/en-us/library/w0x726c2.aspx.

[8] Srečo Uranič: C# .NET. Slovenian book on C#, available at
http://uranic.tsckr.si/C%23/C%23.pdf.

[9] C Sharp (programming language) on Wikipedia.
http://en.wikipedia.org/wiki/C_Sharp_%28programming_language%29

[10] MSDN Visual C++. Available at http://msdn.microsoft.com/en-
us/library/60k1461a.aspx.

[11] Bjorn Fahler: An Introduction to C++ programming. Available at http://www.computer-
books.us/cpp_1.php.

[12] Peter Mueller: An Introduction to OOP Using C++. Available at http://www.computer-
books.us/cpp_4.php.

[13] C++ on Wikipedia. http://en.wikipedia.org/wiki/C%2B%2B.

[14] Marshall Cline: C++ FAQ. Available at http://www.parashift.com/c%2B%2B-faq-lite/.

[15] Nikolai Shokhirev: Practical guide to subversion on Windows with TortoiseSVN.
Suitable for users of Subversion on Windows, available at
http://www.shokhirev.com/nikolai/programs/SVN/svn.html.

[16] Ben Collins-Sussman, Brian W. Fitzpatrick, C. Michael Pilato: Version Control with
Subversion. Suitable for SVN administrators, available at http://svnbook.red-
bean.com/en/1.5/svn-book.html

References

26

[17] Igor Grešovnik: Administrators’ rules for COBIK servers, detailed report on use of the
COBIK servers, internal report, 2011.

[18] Igor Grešovnik: Coordination of software development in COBIK and Laboratory for
Multiphase Processes. Treatiese, COBIK, 2011.

[19] Igor Grešovnik: IoptLib, electronic document at
http://www2.arnes.si/~ljc3m2/igor/ioptlib/.

[20] Igor Grešovnik: IGLib.NET Code Documentation, electronic document at
http://dl.dropbox.com/u/12702901/code_documentation/generated/iglib/html/index.html
.

 Sandbox

27

