I. GreSovnik: Coding standards for COBIK LSS & La#tory for Multiphase Processes

Programmer’s Guidelines for Development of
Software within COBIK & Laboratory for
Multiphase Processes

Revision 1.3, March 2012.
(Revision 0: Dec. 1010)

Igor GreSovnik

I. GreSovnik: Coding standards for COBIK LSS & La#tory for Multiphase Processes

Contents:
N [11 0 o 11 o 1T o USSP 1
2 Programming SUYIE. ... oottt ——————————————— e aaaaaaes 2
2.1 General Programming StYIE.........oovviiiiiiiiicmmeeeiiiiiiiiiiiii e ar e e e 2
N I O o (=T £ To [N 1] (=2 TP PRSPPI 2
2.1.2 NAMING CONVENTIONS ...coiiiiiiieiaaaaei ettt ettt et aaaaaaaaaeaaasaaaaaaaeseeeeeeaeaaaaaaaaaaaaaasaaaaaannnnnrenes 3
2.2 Documenting Code by COMMENTScoooiiiii et e e e 3
2.2.2 Documentation Comments for Classes, Methods, PliepeDerived Types, etC...........ceeeevvvvveeeennnn. 4
2.2.3 Building Code Documentation for C# development @Gccccvvvviriiieiieiieeeeee e e e e e e e e e 7
2.3 Organization Of COUE.........cooiiii et eeenaeeeessesssassssessnsesrnnrnees 8
2.3.1 INdiVIAUAI IEVEIS OF COURt eeaerraaaaaans 9
G B =Y 1o AV o T 1 11
3.1 (070010 0 T0T QTS =TV o = 12
3.2 Structure of the Code REPOSITONYceiiiiiiiimmiie et e e 13
3.2.1 ChecKiNg OUL the COOE........ooi it e+ttt ettt ettt e e e e e e e s e aa e nnnebatbbsbeeeeeeeeaaaaaaaeaaaaaaaanan 14
3.3 Using Subversion Code RePOSITONIEScoiieeeeeiiiiiiiiiii e see e eeeeeneenanes 16
3.3.1 Precautions to Avoid Obstructing other People’'S MVOL...........coveeeeeiiiii e 16
3.3.2 Treatment Of MS WOrd DOCUMENTS.............. e reerrreereetteeaeaaassssasssssssssssseserereeeseeeeasessessanansnsnnes 22
3.3.3 Troubleshooting SUBVEISION (SVIN)........uuiiiiiiiiieiieeee e e e e e e e s e e s e e s s ebenreeeeeees 24
3.3.4 Things You Should not Do or You Should DO With Care..............ueeeiiiiiiiiiiiiiaaaaa e 24
Y STt = | oY =0 11 R 24
5 SANUDOX it e Error! Bookmark not defined.

1. Introduction Programmer’s Guidelines for Deyghent of Software within COBIK &
Laboratory for Multiphase Processes

1 INTRODUCTION

The present document contains coding standardguddlines for development of software
in Prof. Bozidar Sarler’'s groups at COBIK & Univigysof Nova Gorica. Beside a set of rules that
we will stick with, the document also provides wais information relevant for members of the
team, such as instructions for use of common ses\ie.g. the Subversion repository).

In order for team work on software developmentun smoothly, some minimum set of
standards must usually be set up. The programntyhg should meet the criteria of good object
oriented design, which must be learned from boakd acquired through practical work. Since
programming style is always an individual thingstame extent, it can nod be strictly prescribed.
Beside taking care of the quality of your own pragddeam work also requires a certain level of
discipline and compliance with a number of logiodkes of conduct. Not to go into details with
pretty much obvious stuff, let’s just mention tiedldwing one:

If you can’t help, at least don’t obstruct.
The above applies to all forms of not being ableh&dp (lack of knowledge, lack of

willingness to help, sluggishness, exhaustion, texbd, having own problems - just name it).
Simply keep in mind that the team is not just yaatherwise it wouldn’t be called team.

2. Programming Style Programmer’s Guidelinedfevelopment of Software within COBIK &
Laboratory for Multiphase Processes

Reading:
* Harness the Features of C# to Power Your Scier@ifimputing Projects

2 PROGRAMMING STYLE

2.1 General Programming Style

It is necessary that all people performing develepimwork on the code maintain some
minimum standard regarding the programming stytegfRamming style must be in line with basic
rules of object oriented programming (O®RNnd each developer is responsible for generating
clear, well designed and sufficiently documentepbctoriented code.

The above request is inevitable in the environmadrdre it is expected that serviceable code
is produced. By definition, such ode must be maguteintainable, reusable and scalable. It must
be possible for other people to continue or usesomerk without unnecessary overhead in
introducing to the code. By current modern stanslatdshould be possible for anyone that is skilled
in programming and knows well the subject of thde;ao start contributing on the code without
undergoing additional training.

2.1.1 Prerequisites

Anybody involved in code development is responsibleacquiring the necessary general
programming knowledge (e.g. [3]-[5]), solid knowigdabout the programming language of choice
(e.g. [6]-[9] for C# and .NET, [10]-[14] for C++)nd the development environment used.
Knowledge of tools that are used to support worthateam must also be acquired (such as using
Subversion, see e.g. [15]). Beside that, progrargnalwvays requires experience that can only be
acquired by practical work. Any individual programms therefore also responsible for going into
coding problems persistently and on continuousshiasorder to improve skills. Checking out and
expanding illustrative examples obtained form thiernet is a very good practice (even the most
experienced programmers do that).

Whenever the course of work allows that, code rmesiby more experienced developers
should be practiced. Reviewers’ remarks should drefally considered and corrective actions
taken if necessary. We want to tend to collaboeatirganization of work where everybody is open
for questions as well as advice from colleagues.

! While there exist programming paradigms others tB®P (e.g. functional, logic, imperative, declamtconstraint,
concurrent...), many of which are beneficial intagr areas of application, we will usually not needidopt paradigms
that lie much beyond OOP.

2. Programming Style Programmer’s Guidelinedfevelopment of Software within COBIK &
Laboratory for Multiphase Processes

2.1.2 Naming Conventions

Names should be chosen to be as descriptive atlgog3ften a well written code can be
understood without reading any comments if the rsaane chosen well. Use long enough names in
order to be descriptive, but don’'t exaggerate! Rickstyle names such as “Y_ROL_O” are
outdated and must not be used. Use e.g. RollCeistarizeY instead With the autocomplete
function nowadays available in practically all IDEsing moderately long names will not affect
your coding speed but will improve readability & lo

Otherwise, try to stick with naming conventions tttere used as standard for the
programming language of choice (see e.g. [1]-[ZDese things are not there to force you into
something but to increase mutual readability ofpbes code, although there is no intention to
strictly enforce every detail of universally aceagptonventions.

Almost everywhere nowadays there is an agreemantinihcase of composed names, each
constituent word starts with an uppercase lett@ichvgreatly increases readability. The first lette
of a name may be an exception. In C#, for examméenes of local variables (defined within
function bodies) and function arguments should hh>h a lowercase letter in order to distinguish
them from public class members. Auxiliary classatales (usually defined as private) should begin
with an underscore followed by a lower case leftethis way it is difficult to mix them up with
anything that is intended to be less internal. §dasfunctions and properties should normally begin
with an uppercase letter. You can make exceptionisis rule when you want to warn users of your
code that there is something special about a giveity (e.g. that a class or a function is defined
only temporarily for testing, which should be do@nted in comments anyway, but everybody will
more easily focus attention if the name is chosemmon-standard way).

2.2 Documenting Code by Comments

It is important to document any piece of code ishsa way that users as well as other
developers of this chunk of code can easily esthblihat the code does, how it is used, which is
the meaning of exposed methods, properties and elata

The main way of code documentation will be throaglmments of classes and methods.

If some method implements complicated algorithnad #re not so obvious at a first glance,
you should insert some comments between the codedar to make obvious what given portions
of code do. Try to be concise but descriptive vgitith comments. You can put such comments in
separate lines above the line or (more often) amuad lines of code that you intend to comment, or
you can add short comments at the end of the ditoe tcommented. With the first style comments it
is common to form full sentences, capitalized andeel by colon. The second style comments are
usually inserted without capitalization and withdutl sentence structure (such comments are

! Also a bit peculiar, since in modern programmiagguages you'll treat and group vector variableseasors, and
you will seldom define variables for individual cpoments.

3

2. Programming Style Programmer’s Guidelinedfevelopment of Software within COBIK &
Laboratory for Multiphase Processes

common e.g. in commenting variable declaratione/m@ents (of typ#* */) can also be inserted
in the middle of lines, e.g. to comment actual fiorcparameters in long function calls.

2.2.1.1 Task Comments

Comments starting with the “TODO” string have aggemeaning. They denote tasks that
still need to be done. You can locate such commientse code by selecting “View/Tasks List”
from the main menu in Visual Studio.

Whenever you haven’'t completed something in theecgdu should denote this with such
comment. This is a notice to other programmerstthags in a given portion of code don’t function
yet completely, that this is known (it is not a bagd there is intention to return back to it aixd f
it.

Typical situations when you need to insert TODO gwnts are when you still don’t have
solutions to particular problems or when you ddradve time to polish things, and you only bring
the code into a condition when it can do things gweed for your current tasks. You should avoid
such situations however, because completed parfialished tasks gets more expensive in the
future.

2.2.2 Documentation Comments for Classes, Methods, Propigs, Derived
Types, etc.

See also:
« XML Documentation comments

For commenting constituent parts of code structuse, documentation comments. These
comments are inserted automatically in C# by insgrthree slashes (///) and pressing <Enter>.
This inserts a template already containing the mostmon XML tags used for automatic creation
of documentation and in code balloons shown inle when hovering a mouse pointer over the
appropriate symbol.

2.2.2.1 Denoting Authorship in Documentation Comments

From comments it must be obvious who and when (apmately) designed, modified and
updated specific classes, methods, properties, etc.

Authorship tags should be inserted below the conirtiiert documents the specified symbol
(class, method, property, etc.).

2. Programming Style Programmer’s Guidelinedfevelopment of Software within COBIK &
Laboratory for Multiphase Processes

The general form is

/Il $A <author_acronym0> <time01>, <time02> ..., <tim eON>; <author_acronym1>
<timell> <timel2> ... <timelM>; ...

Author acronyms are agreed within the group of tgpars. They should be short (to save
typing) but distinctive (such that reader of theleaan easily figure out who has worked on the
specified piece of code). There must be a fileaohecode repository containing a table of author
acronyms and corresponding full names (and possibigr personal data), or a reference to such a
table. For example, a root directory of a code sépoy may contain the filauthors.html, with
approximately the following contents:

Author acronyms used within the code comments:

Igor = Igor GreSovnik, ajgor@Ivs.com |, tel. (+386) 1 3873 879.
Robert = Robert Vertnik, r.vertnik@Ivs.com , tel. . (+386) 1 3873 878.
GKosec = Gregor Kosec, r.vertnik@Ivs.com , tel. . (+386) 1 3873 877.

Unknown = any unknown author.

Time marks are composed of abbreviated three letl@nth marks and two-digit year
written together. Several time marks in a row apasated by spaces. Examples are Jan09 (for
January 2009) or Oct10 (for October 2010). The firse mark must tell when the specific author
has created or firs updated the corresponding {tdass, method, etc.), and others denote when
subsequent important updates were made by thiomuththere are several authors that were
working on the specific item then they must beelissubsequently, each one with his or her own
time marks, and separated by semicolon (;). Diffel@uthors should be listed in chronological
order of their first involvement with the specifigdm.

For time marks, the special mark ‘xx’ can be useddnote that something was initiated by
somebody before time marks were first insertechen dpecific comments. This is used e.g. when
some programmer has coded a given item but heeodisln’t insert any author mark. If you update
the code after that you can insert the author méudére you state yourself and the time(s) when you
modified the code, but before that you should stagoriginal author with “xx” for time mark
(because you don’t know at what times the origanathor has created and updated the specified
item). If you don’t even know who the original aattwas, use the “Unknown” keyword in place of
the author’s acronym. You can even use the xx timaek for yourself if you are not sure when you
have created some item.

Examples:
/Il $A 1gor xx; Robert Nov10 Janll;
/Il $A Unknown xx; Igor Jul09;

1l $A Igor xx Feb09 Oct10 Dec10;

You can also use author marks more loosely in titzlla of the code. There you can use
only the $A tag and your author’s acronym followmda less formal description, e.g.

5

2. Programming Style Programmer’s Guidelinedfevelopment of Software within COBIK &
Laboratory for Multiphase Processes

i = i+1; // Corrected, $A Robert on January 12 2010 , (orig. i =j+1;)
Author should be stated at least for each class.

Author marks can be omitted in comments of meth@adsperties, etc. In this case it is
understood that the given method has been creaiddipdated by the same author as the class
containing the method.

It is not necessary to insert time marks for eachomupdate you make in the code. Be
concise but provide some basic information on wdash by whom things were created, modified or
updated. Two basic purposes of author marks aiaggiwou the credit for your work on the code
and to enable users of the code to establish whegndan contact for additional information.

2.2.2.1.1 Examples:

/// <summary>Interface for classes that implement blocking until a specified condition
is met.</summary>

/// $A Igor Jun@9 Febl@ Mayl@; Stanislav Marle Seplo;

public interface IWaitCondition : ILockable

{

From the above example it is seen that Igor has diefined théWaitCondition interface in
June 2009, and has introduced some substantiaficadtins in February and May 2010. Stanislav
has also worked on this interface in March 2010 September 2010.

/// <summary>Used internally for locking access to internal fields.</summary>
/// $A Igor xx Aprl®@ Junl@; Stanislav Marl®@ Seplo;
protected object InternalLock { get { return internallock; } }

From the above example it is evident that Igor ¢r@sited the property callédternal Lock

but didn't denote when (maybe he inserted the aigthmark only for the containing class). In
March 2010 Stanislav modified the property. He kribat Igor was the original author but didn’t
know when he created the property, so he inserteid place of Igor's time mark, and added his
own mark for his March 2010 modification. In Jur@@, Igor modified something else in property
definition and added the appropriate time mark im fart. Then in September 2010 Stanislav
modified another thing and denoted this with anitemithl time mark in his author's mark. The
author’s mark evolved as follows:

At unknown time in the past, Igor creates the priypleut does not insert author’'s mark:
/// <summary>Used internally for locking access to internal fields.</summary>
protected object InternalLock { get { return internallock; } }

6

2. Programming Style Programmer’s Guidelinedfevelopment of Software within COBIK &
Laboratory for Multiphase Processes

In March 2010 by Stanislav (creates the author’skina
/// $A Igor xx; Stanislav Marle;

In April 2010 supplemented by Igor:
/// $A Igor xx Aprl@; Stanislav Marle;

In June 2010 supplemented by Igor:
/// $A Igor xx Aprl®@ Junl@; Stanislav Marle;

In September 2010 supplemented by Igor:
/// $A Igor xx Aprl®@ Junl@; Stanislav Marl®@ Seplo;

2.2.2.2 Detailed Guidelines for Author Marks

2.2.3 Building Code Documentation for C# development pragcts

The documentation is automatically generated frbm ¢ode and form specially tagged

comments. The documentation resides in the
<.../workspace>/doc/codedoc

directory where <.../workspace> is your workspaiceaiory where you have working copies of the
SVN repository directories.

This directory contains a HTML file with links toodumentation and project files and code
for generation of the documentation. It also cargaionfiguration files necessary to automatically
generate documentation by using the appropriats.too

The documentation itself is excluded from SVN refmog because it contains only
automatically generated files, it is large and widokd the server unnecessarily.

All instructions for generation of code documemtatiare included in the html file that
contains links to documentation.

2.2.3.1 Some information information about Doxygen

Remark:
This text is not necessary for understanding howgémerate your local version of
documentation. All necessary instructions are enHIT ML file containing documentation links.

Doxygen can be used to automatically generate HTbtLother form of) documentation
from the documentation comments in source coderder to use the tool, you must download the
following software:

» Graphwiz(Windows installers heje
» Doxygen(download hergp

2. Programming Style Programmer’s Guidelinedfevelopment of Software within COBIK &
Laboratory for Multiphase Processes

A general overview of how to ug@oxygen to generate documentation of your source code
can be found in these tutorials:
» Doxygen - Getting started
 Doxygen Manual

In order to create a new configuration file for ey documentation project, either copy
another configuration file and change the relevantries that must be different for new
documentation, or create a new configuration file tgping the following command in the

command prompt:
doxygen —g <filename>

Configuration files can be easily edited by anyt editor. Alternatively, the graphical front-

end can be used by
doxywizard <filename>

It is better to edit the configuration files dirgcby a plain text editor, however, because dialog
boxes for choosing files and directories don’t wadty well indoxywizard (e.qg. it is not straight
forward to choose relative paths or to start wiistng path).

After a configuration file is generated, it canrb@ in order to generate the documentation.

This is done by typing the following command:
doxygen <filename>

2.3 Organization of Code

Code must be organized into a logical and cleanhitical (tree-like) structure.

There will be several levels of code:
» Testing code that is not yet mature for inclusiomwfficial repositories
» External general purpose libraries
* Internal basic libraries (those for which the groplds complete control over
development)
» Domain specific libraries
» Application specific libraries
* Applications
» Customized applications - to meet specific custoraguirements

The code in each level will also be structured wehkpect to platform requirements. For
example, C# code that uses libraries available arddws but not generally available on the Mono
platform should be packed to separate librariesdhia be easily excluded from the repository when
libraries and applications are ported to anothatf@m (such as Linux cluster or a Unix-based
supercomputer).

2. Programming Style Programmer’s Guidelinedfevelopment of Software within COBIK &
Laboratory for Multiphase Processes

2.3.1 Individual levels of code

2.3.1.1 External general purpose (basic) libraries

These libraries should be included in a speciahtion, which is many times close to the
location of internal basic libraries, where allliég level code can access them.
These libraries are considered something you das dad use without thinking too much
how it is structured. In order to be treated irs tivay, these libraries must satisfy certain coadgi
* Their domain is not very specific and one can ekpleat several applications can
benefit from use of the libraries (not necessatlthis moment, but maybe later).
* They must be stable enough (well tested, with feajombugs, with well established
and — by expectations - relatively constant inteja
* They must be easily transferrable across diffepéattorms.
« Their license must be such that it does not resrig intended way of use

2.3.1.2 Internal basic libraries

These are libraries that are developed or co-dpeedloin-house and satisfy similar
conditions as the external basic libraries. It sually beneficial to open development of such
libraries (if this would not incur additional hokseping costs) to attract development potential or
additional users that may find more bugs or contahuseful advice for enhancement or addition of
features.

2.3.1.3 Domain specific libraries

These are libraries for which is clear that they caly be used (within our group) in narrow
domains, such as libraries of CAD tools or finiteneent libraries or utility libraries for meshless
methods. It is advisable to design a branchedr{butoo much) directory structure for development
code in such a way that these libraries are noedhixith more basic libraries, but are close only to
the code that will actually use them. In this waywelopers will not need to download everything
from code repositories when working on specificlaagions and the code will be better structured.

2.3.1.4 Application specific libraries

Some utilities will be used only for specific indiual applications. In OOP approach, code
should be well structured at every level, therefibris usually a good practice to separate even
individual applications into smaller entities —laaist one library module that can be compiled
separately, and the top-level manipulation part.

! These conditions usually imply free open sourcerise that is not GPL.

9

2. Programming Style Programmer’s Guidelinedfevelopment of Software within COBIK &
Laboratory for Multiphase Processes

2.3.1.5 General applications

These are general applications such as optimizaserver or a mesh-free analysis
application. Things as simulators can often cortdist number of separate applications such as pre-
processor, pure analysis module (that just reaesnput, performs simulation according to that
input, and outputs the required results).

Many times these connected groups of applicatioisshare a large portion of common
library code and pure application code will be fyrstnall. When the code is well organized in such
hierarchical way it is easy to produce customizeglieations (e.g. demonstration software or
software tailored to customer or project needsp atbthe systematically improved and extended
codebase.

2.3.1.6 Customized applications

These are specialized applications that are crefated given special purpose, such as on
order from an industrial customer, for a projecttmwidely distribute a demonstration code that
popularizes work of the group.

In the case of commercial software for a specifistamer, beside using extensive portions
of common code base (libraries and sometimes alse ggeneral applications), these applications
may consist of extensive portions of code thatrdpced specially for the specific application.
Many times such code may contain things that aresidered a trade secret of the customer,
therefore the top-most part of such code must &arlgl separated form other code (sometimes it is
required that access to the code is granted imyarestrictive basis).

2.3.2 Organization of Code Projects

Code projects must be organized in such a waypeple can easily work in team, projects
are adapted to storage in central SVN repositogesle can be easily tested, project data is
separated from code, code is easily transferabiwdem different computers and even between
different platforms, etc.

In general, the following criteria should be metdmgle organization:

1. When code is checked out on a different machinegntbe readily compiled, linked
and run without any adjustments on the local system

2. Even when the code is checked out on a computér diiterent platform than the
one the code was created on, it should be easyat@ nt work. This should not
require more than installation of the appropriagedopment environment and
execution of some scripts.

3. Nothing produced by compiling or running the cotdewdd be committed to SVN.

4. Tests on the code can readily be performed by ayon

In order to easily meet the above criteria, we wiltk with some simple rules outlined
below.

All the code must be put in a single directory ndmerkspace. Each code project must
have a specified location relative to tinerkspace directory. In this case, relative references

10

3. Team Work Programmer’s Guidelines for Develeptrof Software within COBIK &
Laboratory for Multiphase Processes

between any two parts of the code will always wakihere to put thevorkspace directory on the
local disk is a personal choice of each develdpenust not matter.

If we need some data for testing the code, thia dabuld reside in a directory nandada
somewhere within the code project directory. Ttatadshould be put on repository.

If testing (running) the code generates any dattherdisk, such data should be put into the
directory namedestdata and located somewhere in the related project irgc This directory
should not be put to SVN.

All paths for compiler and linker must be relatiwhen using external libraries, all the
necessary files (e.g. .dll, .lib) must be storecsame directory namebin. Since these files are
platform dependent, there must be some other dmgcontaining these files for all platforms in
use, and shell scripts must be provided for eaatfgsin that copy the appropriate files to that
directory. In this way, when checking out the caahea different platform, one will only need to
check out everything necessary and run the sdrgitdopy binary files for the appropriate platform
to the bin directory where they are referencedhgycode.

When using different integrated development envirents, there must be only one source
code for all IDEs in use, i.e, the same code Wwél referenced form different IDEs in different ways
(dependent on the IDE). However, auxiliary fileeafic to different IDEs will be different, and
they will be included in SVN repository.

Any production-level code (i.e. code used for amghelse than just for testing and
demonstration) must be designed in such a wayitthadata obtained from the disk can be located
anywhere on the file system where user has sufiggermissions. It is allowed, however, that data
location for a more complex application or set pplecations is specified by a designated system
variable. In particular, location of the data mb& unrelated to location of the application’s
executable or libraries (failure to comply with ghiule points to extremely unprofessional and
ignorant attitude of developers and project leaUghen code uses more complex but relatively
fixed data structure, it is recommended that athda located in a directory tree with prescribed
structure (or with some mechanisms of dynamic jpagnto relative locations), such that specifying
the location of the data root directory uniquelyfimes location of all other data obtained by
application from the hard disk.

For internal use of the developed software, thborisl be means of quickly generating test
applications and sharing these applications and datween team members. Larger software
projects should include standardized subprojeatgémerating such ugly hard-coded applications.
To share data for internal projects, the directogynedworkspaceprojectswill be used. This
directory must always be located besie therkspace directory (i.e. contained in the same
directory). In this way, relative paths from code data inworkspaceprojects will be constant,
which will enable easy sharing the project datawotking on the same projects by team members.
Subdirectories ofvorkspaceprojects that are shared between two or more team memhbarbe put
to SVN.

3 TEAM WORK

11

3. Team Work Programmer’s Guidelines for Develeptrof Software within COBIK &
Laboratory for Multiphase Processes

3.1 Common Services

Software development in a team can not be imagi@g more without at least two
technical services:
* Revision control system(“Subversion” in our case)
* Issue tracking system(“Bugzilla” in our case)

Revision control systems enable multiple developersork concurrently on the same code,
submit their modifications to a central repositonpdate their working copies of code with
modifications done by the others, revert unintendedadverse changes, restore any file to any
previous revision stored in the central repositetg,

Issue tracking systems enable reporting bugs anmer assues related to software or team
work in general, defining tasks, tracking statusndividual tasks, assigning and re-assigning tasks
creating reports, sending filtered notificationgy(evia e-mail) about any changes in the status of
work, etc.

This section contains basic information for acdessommon services. Subsequent sections
provide more detailed information and describegtlat must be obeyed when using the services.
Table 1 contains user data (except passwords) domnmn services. Below there is detailed
information for accessing common services.

Note: Access to the common services is currently ptéssimly from within the local
network.

3.1.1.1 Subversion access:

Central code repository in a Subversion server banaccessed by clients such as
TortoiseSVNor AnkhSVN. Details about how to copy software from centegasitory to your
working copy can be found in subsequent Sectiosisyell as addresses of individual directories.
Base access to the repository is through the faligwaddress:

* https://192.168.1.34:8443/svn/
Type this in the address bar of your browser am$pxEnter>. A log in window appears where
you can type in your username and password. Whenlgg in, you will first see a list of
repositories, which appear as directories thatgamubrowse. Note that actual useful directories can
be embedded in several levels of “trunk/” direaseri This is so because of the way in which
Subversion organizes data, and which enables userseate branches on which they can
experiment without disrupting work of the others.

3.1.1.2 Bugzilla access:

Bugzilla can be operated entirely via a web inwzfdhat is manipulated in your web
browser. In addition to that, notifications via &ita can be set up for different kinds of events
(related usually to changes of status of bugsfjaskslow is the address for accessing Bugzilla
services (currently this does not work):

» http://192.168.1.34:8080/

12

3. Team Work

Programmer’s Guidelines for Develeptrof Software within COBIK &

Laboratory for Multiphase Processes

Load this address in a web browser and click “Lag In the search field you can quickly

search for tasks, bugs and other issues of yoeirast.

Table 1: User data. Username is used for accessing thee®&ibm repository and should be
the same as username used for computer accoum@sghilla, an e-mail address is used as user
name. Author’s acronym is a mark that is used teteeauthorship of classes, methods, etc.,

within the source code and in some other locatsuth as discussion forums.

Name Username | Author’s e-mail for Bugzilla
acronym in
code
BoZidar Sarler bozidar Bozidar bozidar.sarler@ung.si
Igor GreSovnik igor Igor igor.gresovnik@cobik.si
Robert Vertnik robert Robert robert.vertnik@ung.si
Gregor Kosec kosec Kosec grega.kosec@gmail.com
Katarina Mramor | katarina Katarina Kmramor@gmail.com
Gregor KoSak gkosak Gkosak gregor.kosak@gmail.com
Agnieszka agnieszka Aga zuzannal981l@wp.pl
Lorbiecka
Umut Hanoglu umut Umut Umut.Hanoglu@ung.si
Qingguo Liu liugingguo Qliu liugingguo1980@amail.com
Tadej Kodelja tadejk Tako78 tadej.kodelja@cobik.si

3.1.1.2.1 See also:

* Revision control

0 Subversion

* Issue tracking system

o

Bugzilla

o Trac

3.2 Structure of the Code Repository

Development code is organized in the following ctue:

* base- base libraries
iglib — the basic utility library (covers all basic agdneral utilities and

(0]

functonality that could be used among differentli@pgtion)
* simulation simulation framework

13

3. Team Work Programmer’s Guidelines for Develeptrof Software within COBIK &
Laboratory for Multiphase Processes

» testdeveloptest projects for prototyping and testing of ideas
o develop_nafems- first attempt to design a general simulatiormieavork,
based on Robert's NAFEM&xample.
o example_nafems- Robert’s code for the NAFEMS simple heat conigduct
example
» doc- documentation

You should store these directories with the sanh&tive paths in a separate directory,
preferably namediorkspace

3.2.1 Checking out the Code

All directories form the SVN server should be chetlout to standard locations within the
workspace directory that contains your local working copsgsode projects, documents, etc. Table
2 lists addresses of principal directories in tMNSepository and their corresponding locations in
the local workspace directory. Each principal directory listed in thable must be separately
downloaded (checked out) from the repository, dadcontaining directory must first be created
within theworkspace directory if it does not exist. When checking autlirectory, check carefully
that you insert the correct URL or repository amdparticular, the correct checkout directory. A
frequent error is that one check outs something andirectory that is already under version control
(such directories contain a subdirectory named”,swhich can not be seen in Windows Explorers
unless you switch on the option for displaying leddiles). Such errors can lead to complications
that are hard to resolve.

In order to perform the SVN checkout, you must atisTortoiseSVN (available for
Windows OS; on other systems you must use some St client such as SmartSVN).

Procedure for checking out project directories foinen SVN server is as follows:

» At suitable location, create the directory thatl wdntain your working copy of the
code. It should preferably be namedrkspaceand should not contain other things.

* Open the SVN repository browser. Open Windows Epguloright-click on the
workspace directory, select SVN Checkout.

* In the Checkout box that appears, URL of the dimgctlocation in the SVN
repository and the checkout directory (the directior which contents are saved)
must be specified. See Table 2 below for a lisUBLs and locations within the
workspace directory.

o Warning: be very careful when specifying the checkout dalec Wrong
paths will make relative paths between referencepbpts invalid.

* Click OK. The complete directory structure of th@osen directory will be
downloaded from SVN repository to the directory abfoice. Wait until transfer
completes and click OK again.

! NAFEMS - organization that sets and maintains daatfs in computer-aided engineering analysis (ésiyedche
finite element analysis).

14

3. Team Work Programmer’s Guidelines for Develeptrof Software within COBIK &
Laboratory for Multiphase Processes

Table 2: Repository URLs and corresponding checkout direeso

URL of repository Checkout directory
https://192.168.1.34:8443/svn/doc/doc/trunk/lalkru ...\workspacealoc\lab
https://192.168.1.34:8443/svn/doc/doc/trunk/cod édatk ...\workspacealoc\codedoc
https://192.168.1.34:8443/svn/archive/doc/trunéviiture/trunk ...\workspaceloc\literature
https://192.168.1.34:8443/svn/develop/base/trutik/igunk ...\workspacdiase\iglib
https://192.168.1.34:8443/svn/develop/base/truskligions/trunk ...\workspacdiase\igsolutions
https://192.168.1.34:8443/svn/develop/develop/thilmkrunk ...\workspaceievelop\lib
https://192.168.1.34:8443/svn/develop/develop/tisimédl/trunk ...\workspaceievelop\shell
https://192.168.1.34:8443/svn/test/tests/trunk/iqelraink/ ...\workspace\tests\csharp
https://192.168.1.34:8443/svn/test/tests/trunigiagtrunk/ ...\workspace\tests\testsvn

In addition, there is a separate repository in White C# course material is located. The
address is

https://192.168.1.34:8443/svn/test/tests/trunk/igstraink/

If you would like to use this material, you can ckdé out into the workspace directory (e.g.
to ...\workspace\tests\csharp), but you can alssase other directory of your choice.

There is also a directory where you can practieeaishe Subversion:

https://192.168.1.34:8443/svn/test/tests/trunigtegtrunk

Read the readme file before using this directory.

A separate repository nameagpplementary_projects is prepared for project data directories
contained in th&vorkspaceprojects directory (this directory must be contained in slaene directory
as theworkspace directory). Each user and group has its own dirgain this repository. Address
of these directories are of the form
https://192.168.1.34:8443/svn/supplementary_prsfecirkspaceprojects/trunk/<user>/trun
k,
where <user> is the name of the user or groupdhais the directory. Each user can put his/her
project directories that are included in thierkspaceprojects directory to the appropriate directory
in the SVN repository. Local relative path withimetworkspaceprojects directory is specified by
the creator of project directory. Each of theseduwries should be checked out separately and not
as part of a larger directory structure. For exanphdej has created and uses a project directory a
the location
...;workspaceprojects/12_02_paper_neural_proceas ghodel
He has imported this directory to SVN repositoryhat location
https://192.168.1.34:8443/svn/supplementary prsfecirkspaceprojects/trunk/tadej/trunk/
12 _02_paper_neural _process_chain_model

15

3. Team Work Programmer’s Guidelines for Develeptrof Software within COBIK &
Laboratory for Multiphase Processes

3.3 Using Subversion Code Repositories

Although Subversion is a stable and mature revisiontrol system, there are situations
where use of the system is troublesome and where smnflicts are difficult to resolve. This
Section describes how the system should be usedder to avoid causing problems to other
programmers and to yourself. Use of revision cdrggstems requires some discipline and you
should always think whether your actions could egu®eblems to other developers.

3.3.1 Precautions to Avoid Obstructing other People’s Waok

You should never check in parts of code unless akpendent projects can be compiled!

When all projects dependent on code that you've maiied are compiled without
errors, you should check in all modified code at ore.

You should also not check in parts of code for Wwhyou know that they don’t function
correctly. If your modifications caused malfunctiohsome code then you should correct this first
and then check in.

When you intend to work on parts of code for whias likely that others will also work on,
you should try to find out if somebody else intetalsvork on particular parts of code at that time.
In such a case try to coordinate with these pewoplerder to avoid conflicts that are difficult to
resolve.

When you work on critical parts of cod on whichoa &f other code depends, you should
inform others about that. The same is true when you intend tardomajor refactoring. In such a
case you might consider creating a new branch, wark and merge it with the trunk when you
finish your work.

Avoid locking files! Locking is reserved for really rare situations amai should almost
never use it. When a file is locked, nobody elsethe owner of the lock can commit changes to
that file (others can still read the file from tbentral repository).

Locking can provide some protection against diffionerge conflicts when a user is making
radical changes to many sections of a large filgroup of files. However, if the files are left
exclusively locked for too long, other developeraynbe tempted to bypass the revision control
software and change the files locally, leading trerserious problems.

3.3.1.1 Ignore Lists for Project Directories

In your working copy (i.e. copy on your local digiat is under version control) of project
directories, you should set ignore property*feixe, *.dll, *.pdb, *.suo *.bak files and forbin, and

16

3. Team Work Programmer’s Guidelines for Develeptrof Software within COBIK &
Laboratory for Multiphase Processes

obj andtestdata directories. By internal conventiotestdata is the name used for directories
where test data is kept, which is generated progpatnoally and may change frequently because
tests are performed on that data.

The purpose of using ignore patterns is two-fold:

» Other users won't override your personal settiregg. (those related to your platform
specifics or those defining the layout of your depenent environment.

» Time is saved because the large generated filds asicobj, .exe, .dll, etc., are not
transferred over network and copied each time y@uperforming commits and
updates.

This can best be done in TortoiseSVN on Windowsc&dure is as follows (just make sure
first that you have TortoiseSvn installed, thiséen in context menu when you right-click on any
directory or file):

* Open root directory of the project or solution inndbws Explorer. The directory
should be marked by one of the SVN icon overlayg, a green hook or a red
exclamation mark.

* Right-click on the root directory where project is installed, and select
TortoiseSVN/Propertiesfrom the context menu.

* In theProperties box that opens, do one of the following:

o If the box already contains the property narsed:ignore then just double-
click the corresponding enrty.

o If the box does not contain svn:ignore then chigw, then selecsvn:ignore
under Property name, and insert values under Rsopaiue.

* In the Edit Properties box that opens, add corresponding entries to leddo
ignore list undeProperty value. You can separate entries by spaces or newlines.

0 Add your ignore pattern, e.g.dll *.exe *.pdb *.suo *.bak */bin */obj

» Check theApply properties recursivelipox and click thé®K button.

* Click theOK button again (in th@roperties box).

If you browse your projects’ working copy, all tladove mentioned files that should be
ignored by SVN should not have TortoiseSVNs’ icarerdoads visible in explorer. If this is not
true for some files, you should check if the camtay directory has the svn:ignore property set.

Warning:

Do not add *.exe and *.dll to ignore lists for diteries that are intended for third party
libraries and applications. Such directories shobkel separated from root directories of
development solutions.

3.3.1.1.1 Setting up Global Ignore

You can set a global ignore pattern In TortoiseSVNe global ignore pattern will prevent
the specified files showing up e.g. in the comnalay. Files specified here will also be ignored in
import. The pattern you set up here will not affetiter users because it is not versioned and will
exist only in your personal settings for the Ta&8VN application.

17

3. Team Work Programmer’s Guidelines for Develeptrof Software within COBIK &
Laboratory for Multiphase Processes

The global ignore pattern should be more restecthan the ignore patterns that you set up
on different directories because it will be used dommitting and importing files to the central
repository for all different projects, not only sifec ones.

The procedure is as follows:
* Open Windows Explorer
» Press Alt-F for the File menu, then choose Tor®\4d¢/Settings.
* In the Settings box, choose general and then insert the pattederiobal ignore
pattern.
o Example of global ignore pattern: *.bak bin objuos Usually some pattern
is already set up when you install TortoiseSvn.

3.3.1.1.2 More on Ignore Patterns for C# Projects

Dependent on the type of the projects, one maylififezent ignore patterns.
One simple but probably quite effective global ighpattern I'vefound on the internes
the following:
e *\bin* *\obj* *.suo *.user *.bak **.ReSharper** **\ ReSharper.** StyleCop.Cache
A more elavborated pattern:
* *o0 .o .la## ..rej .rej .~ ~ # .DS_Store thunadis Thumbs.db *.bak *.class *.exe
*.dll *.mine *.obj *.ncb *.lib *.log *.idb *.pdb *.ilk .msi .res *.pch *.suo *.exp .~ .~
~. cvs CVS .CVS .cvs release Release debug Delmagedgnore bin Bin obj Obj
*.csproj.user *.user ReSharper. *.resharper.user

In ignore patterns, different items must be sepdrdity spaces. Patterns use filename
globbing where files can be specified by using waldls. The following characters have special
meaning:

* * - matches any string of characters, including éimpty string

* ? - matches any single character

* ;[...] - matches any one of the characters enclasede square brackets. A pair of
characters separated by ‘- matches any charaeecally between the two
characters (including the characters themselves).

Pattern matching isase sensitive

You shouldnot include path information in patterns. Pattern matching is intended to be
used against plain file names and directory naf@sexample, if you want to ignore compléta
directories, just adtin to the ignore list.

If you want for example excludi#ebug directories included ibin directories, but nadebug
directories included elsewhere, you should achthiseby using thesvn:ignore property ona Ibin
directories. According to documentation, theredgeliable way to achieve this using global ignore
patterns.

18

3. Team Work Programmer’s Guidelines for Develeptrof Software within COBIK &
Laboratory for Multiphase Processes

3.3.1.2 Copying Directory Structures to a Location under Vesion Control

Say you have a working copy of a complex sourceecqubssibly containing several
solutions and a large number of projects. Then want to include existing branched directory
structure at the desired location within that wogkcopy and put it under version control.

Rule of thumb ighat you should not (recursively) copy the directoy directly into the
working copy. You should instead copy it on the subversionese(e.g. by using a TortoiseSVN
repository browser) and get it into the working gepa SVN update.

Recommended steps are the following:

» Copy the directoryto the appropriate location within tleentral repository on the
SVN server that manages your working copy.

o In Windows Explorer, open the directory that you want to include in the
working copy (you must first have TortoiseSVN inistd).

o Open Tortoise’s Repository browser(in Windows Explorer, right-click on
some directory, choose TortoiseSVN/Repo-browser).

o In repository browser, navigate to the location hgou want to include
your directory structure.

o Copy the directory to the server dyagging it from Windows Explorer to
the appropriate location in repository browser.

» Update working copy (In TortoiseSVN, right-click on some directory thaill
contain the added directory structure, choose Ts®8VN/). The newly included
directory structure should be copied to the cowadmg location in the working
copy.

* Recursively add thesvn:ignoreproperty on the newly added directory structure.

o In windows Explorer, right-click the root of the wly included directory,
choose TortoiseSVN/Properties, and recursively #del svn:ignore list
(details are in Sectiod.3.1.1).

Important remarks:

If you are copying the directory that was previgushder source control, you should create
a copy and recursivehemove all .svn subdirectories from the directory structure.

It may be a good idea to remove user specific agmkgated files before including the
directory, such as *.exe, *.dll, *.pdb, *.suo. Bareful though, since some directories may contain
.exe and .dll files that are not generated by th@ained projects but are third party libraries and
applications referenced by the directory.

When copying a small number of files in a singlediory, it may be easier to copy them to
the working copy and then add them to SVN’s cemnpbsitory. This is the case only when it is
easy to locate and select all new files in Windewsslorer. In this case, the procedure is as follows

» Copy files to the appropriate location within therking copy.

» Select the newly copied files in Windows Explorer.

* Add files to repository (right-click selected fileshoose TortoiseSVN/Add, confirm
addition).

» Commit addition (right-click selected files, chod&®&N Commit).

19

3. Team Work Programmer’s Guidelines for Develeptrof Software within COBIK &
Laboratory for Multiphase Processes

You can check in repository browser whether thesfivere actually added to the
central repository (right-click the directory inethworking copy where copied files

are located, select TortoiseSVN/Repo-browser).elpository browser, refresh the

view first (right-click a directory, choose Refrg¢sbtherwise the changes may not be
visible.

3.3.1.3 Modifying Solutions under Version Control in the IDE without SVN Plugin

Sometimes you will work with integrated developmemntironment (IDE) that does not
have a SVN client integrated. For example, you mainintegrate SVN clients with Visual Studio
Express because the express editions do not syppgrins.

In such a case, changes in solutions and projatithiat be automatically reflected in the
SVN structure of the working copy, e.g. new filedl wot be versioned automatically. You will
have to put changes under version control manually.

3.3.1.3.1 Adding New Projects or Files within Projects
When a new project is added, do the following:

Save changes in your IDE in order to make sure thatchanges are actually
reflected in the file system.
Check for changes in a directory that for sure aimist all newly added files (right-
click the directory, choose TortoiseSVN/Check foodifications). If you are not
sure, do it on the root directory of your workingpy (this will take longer and it
may be more difficult for you to filter files thare added as a consequence of your
changes).
In theWorking Copy box that opens, check th8low unversioned fil€soption.
Add and commit new files:
o Select all files that are related to addition & tiew project (they should be
listed with non-versioned status). Right-click the selected files and choose
Add, then click OK.
o Right-click the files again, select Commit.
Commit changes on the rood directory containingwhele solution (right-click the
directory in Windows Explorer, select SVN Commlifpu must do this because the
solution file also changes when a new project ¢edd

3.3.1.3.2 Adding a New File within an Existing Projects

When just adding a file to an existing project tigtalready under version control, the
procedure is similar as when adding a project (&ecB.3.1.3.1) except that you can omit
committing the root directory (since all changes lamited to project directory, unless you have re-
defined the project directory structure in suchagy that it deviates from the default one).

3.3.1.3.3 Renaming Files within an Existing Projects

20

3. Team Work Programmer’s Guidelines for Develeptrof Software within COBIK &
Laboratory for Multiphase Processes

When renaming a file, the procedure is similar &g&nvadding a file, except that you must
now do two things: remove the file with the old reaand add the file with the new name. Similar
can be carried out when renaming multiple filesvben renaming a project.

» Save all in the IDE such that all changes are cedtein the file system (if you use
Visual studio, press Ctrl-Shift-S).

» Check for changes in the directory that for suretains all renamed files (right-
click the directory in Windows Explorer, select RuwseSVN/Check for
Modifications).

* Check the Show unversioned files” option. File(s) with original name will appear
with the ‘missing” status. . File with new name will appear with timen-versioned”
status.

* Right-click the missing file (original name(s)) select multiple files and right-click
selection, choose Delete.

* Right-click the non-versioned file (hew name(s))setect multiple files and right-
click selection, choose Add.

* Click the OK button twice.

* Perform Commit on the directory containing all rewa files (right-click the
directory in Windows Explorer, choose SVN commit).

» Just for any case, you may check the state of ¢énéral repository in a repository
browser (right-click the directory in Windows Expdo, choose TortoiseSVN-Repo-
browser). Don’t forget to refresh the directoryirterest (right-click, Refresh).

3.3.1.3.4 Deleting a Project or a Directory Structure

When removing a project in Visual Studio, the pcojs removed form solution but files are
not actually deleted. You just need to commit cleasng the solution file in this case, and you must
manually remove project directory if this is whatywant to do.

When you recursively delete a complete directody-stmucture from your working copy,
you should carry out the following procedure:

* Check for modifications in the directory that contal the deleted directory (right-
click the directory in Windows Explorer, choose {biseSVN/Check for
modifications).

» If there are too many files listed in the “Worki@ppy” box that opens, you can
uncheck the “Show unversioned files” (since thedtory that you have deleted was
managed by SVN).

* Right-click the deleted directory (if you have debk multiple directories, select
them first and then right-click the selection; tieectory should be listed with the
“missing” status), choose “Delete”.

* Right-click the directory (or selection in case wiultiple directories), choose
Commit.

* Confirm by clicking the OK button twice.

Remark:

21

3. Team Work Programmer’s Guidelines for Develeptrof Software within COBIK &
Laboratory for Multiphase Processes

Sometimes it is enough to perform Commit on theedory that contains the deleted
directory (or directories).

3.3.2 Treatment of MS Word Documents

When you modify a MS Word document from the SVNpesstory, you must ensure that
modifications are added to the repository docunagat that modifications added by other users a
the time you were editing your local working coplytbe document are not overridden by you.
Follow this procedure in order to add contents W@ord document:

1. Update your working copy of the document. In Windo&xplorer, open the
directory containing the working copy of the docurme

Right-click the
document and choose “SVN Update” from the menuficarby clicking the OK
button.

Open and edit the document (your working copy).

Save and then close the document when finished.

Commit the changed document back to the centralsrapy. In Windows Explorer,
open the directory containing the working copy loé tdocument. Right-click the
document and choose “SVN Commit” from the menucdimit fails then follow

the conflict resolution procedure described below.

hwn

When somebody else has committed changes to theradmt in the time between your last
update and commit attempt, the commit will fail #ese the document is in conflicted state (you'll
get a descriptive error message). In this casklevidhe resolution procedure below:

1. Perform update on your working copy of the documight-click in Windows
Explorer, select “SVN Update”). Update will alsal flaut you have to perform it in
order to proceed.

2. Try to perform commit again (right-click in WindowExplorer, select “SVN
Commit”). "Commit” window will open where the docemt is shown in red and
tagged “conflicted” under the “Text status” column.

3. Right-click the document in the "Commit” window asdlect “Edit conflicts”. This
will open a copyof the document where changes between the docuimethie
repository and your working copy are shown, readly rejecting and accepting
individual changes.

4. Use buttons to accept or reject chang,‘f,"jf5 “t} G sk 7)) in order to merge your
modifications into the working copy, then save doeument at the location of your
working copy. You can either override (replace) therking copy or (for better
safety) use “Merge changes into the existent file”.

22

3. Team Work Programmer’s Guidelines for Develeptrof Software within COBIK &
Laboratory for Multiphase Processes

* You must accept or reject all changes before adieigithe working copy with
the open document.

* Reject all changes that mean deletion of stuff ane entered (changes are
marked with respect to the repository document, yaar working copy,
therefore your changes are marked as deletionghwiloiu must reject).

* Accept all changes that are not yours, since thase changes that were
committed by other users while you have editeddttaiment.

5. Right-click the document in the "Commit” window agabut now select “Resolve
conflict using ‘mine”. Make sure that the documenmith accepted and rejected
changes has been solved as working copy beforedgothat (otherwise you can
override somebody elses work)!

6. Click OK in order to commit the document.

* Inrare occasions it can happen that this last corfiaiis in spite of the fact that you
have resolved the conflict by using your changdss happens e.g. if during the
(usually short) time between resolution and consaihebody else commits changes
to the document. In such a case, just repeat Huutgon procedure:

a. Perform SVN Update on the document, followed by S¥Vdmmit.

b. In the commit window, perform "Edit conflicts” ohé¢ document.

c. Accept and reject changes as appropriate, and oterthe working copy
with the resulting document.

d. In the commit box, perform “Resolve conflict usimgne” on the document.

e. Commit the document.

Remarks:

In order to download the “doc” directory from thentral repository into youworkspace
directory (i.e. to create a working copy of theediory), do the following:

* Open the workspace directory in Windows Explordre Tvorkspace directory is the
location on your local disk where you decide torestevorking copies of the
repositories’ files (e.g. d:\userss\workspace).

* In Windows Explorer (you must have TortoiseSVN atietd), right-clik on an empty
space within the workspace directory, and chood&\'E€heckout” from the menu.

* Under “URL of repository”, insert
“https://192.168.1.34:8443/svn/doc/doc/trunk/lalotl/” .

* Under Checkout directory, insert “<workspace_dioe\tb” and press the OK
button. You have created a working copy of the “diicectory from the repository.
The document of interest is located in
“...\doc\discussions\choice_of simulation_platforntdo

With the above procedure, it is recommendable t&eran additional local copy of your
working copy of the document. If you override yailranges in the working copy, you can still
merge these changes into it from this additionglyco

23

4. Miscellaneous Programmer’s Guidelines for Dewment of Software within COBIK &
Laboratory for Multiphase Processes

3.3.3 Troubleshooting Subversion (SVN)

SVN clients are sometimes pretty capricious. Begdtiss easy to do something wrong
when you are not completely familiar with some @bly buggy) features, we will here maintain a
collection of unusual behavior and possible rengedie

Remember, your first care when using SVN is not tonake something that would cause
problems to other users!

3.3.3.1 Problems with TortoiseSVN

Sometimes you can not commit some items. It map feyou perform Update on these
items first, and try to commit again. It sometinhedps.

If you get a message that you don’t have permissi@mmmit changes, contact SVN server
administrator to check whether there is actuallpsthing wrong with permissions!

3.3.4 Things You Should not Do or You Should Do with Care

Do not delete files directly from repository! Clisrmight have problems with this. If you
really need to do something like this, ask admiatst to do it!

See also:
» Version Control Systepra Wikipedia article
» Apache Subversigra Wikipedia article
» Apache Subversiqrofficial home page
» Version Control with Subversig@a book.
» Comparison of Subversion clients Wikipedia article
* An Introduction to Subversioftentered around use of TortoiseSVN)
» TortoiseSVN Tutorial
» TortoiseMerge Tutorial

4 MISCELLANEOUS

24

4. Miscellaneous Programmer’s Guidelines for Dewment of Software within COBIK &
Laboratory for Multiphase Processes

[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]

[13]
[14]
[15]

[16]

References:

Doug Lea: Draft Java Coding Standard. Electtaocument, available at
http://g.oswego.edu/dl/html/javaCodingStd.html

C# Coding Standards & Best Practices. Eledtrdocument, available at
http://www.dotnetspider.com/tutorials/CodingStari$agoc

Object-oriented programming on Wikipedia. Redsb all pages that are linked from
introduction!http://en.wikipedia.org/wiki/Object_oriented prograing

Design pattern (computer science) on Wikipedia.
http://en.wikipedia.org/wiki/Design_pattern %28cantgr_science%29

Model-view—controller on Wikipedia. An importeexample of design pattern.
http://en.wikipedia.org/wiki/Model%E2%80%93view%E898693controller

Faraz Rasheed: C# School. An excellent bookfaming C#, available at
http://www.programmersheaven.com/ebooks/csharp kepdb

MSDN .NET (includes searchable reference doauaten for c#). Available at
http://msdn.microsoft.com/en-us/library/wOx726c¢cpxas

Sraio Urant: C# .NET. Slovenian book on C#, available at
http://uranic.tsckr.si/C%23/C%23.pdf

C Sharp (programming language) on Wikipedia.
http://en.wikipedia.org/wiki/C_Sharp_%28programmitanguage %29

MSDN Visual C++. Available atttp://msdn.microsoft.com/en-
us/library/60k1461a.aspx

Bjorn Fahler: An Introduction to C++ progranmgi Available atttp://www.computer-
books.us/cpp_1.php

Peter Mueller: An Introduction to OOP Using-€+Available athttp://www.computer-
books.us/cpp_4.php

C++ on Wikipediahttp://en.wikipedia.org/wiki/C%2B%2B
Marshall Cline: C++ FAQ. Available a&ttp://www.parashift.com/c%2B%2B-faqg-lite/

Nikolai Shokhirev: Practical guide to subversion Windows with TortoiseSVN.
Suitable for users of Subversion on Windows, albéglat
http://www.shokhirev.com/nikolai/programs/SVN/svimih

Ben Collins-Sussman, Brian W. Fitzpatrick,Michael Pilato: Version Control with
Subversion. Suitable for SVN administrators, avddaathttp://svnbook.red-
bean.com/en/1.5/svn-book.html

25

References

[17] Igor GreSovnik: Administrators’ rules for COBkervers, detailed report on use of the
COBIK servers, internal report, 2011.

[18] Igor GreSovnik: Coordination of software dey@inent in COBIK and Laboratory for
Multiphase Processes. Treatiese, COBIK, 2011.

[19] Igor GreSovnikioptLib, electronic document at
http://www?2.arnes.si/~ljc3m2/igor/ioptlib/

[20] Igor GreSovnikiGLib.NET Code Documentation, electronic document at
http://dl.dropbox.com/u/12702901/code documentéiemerated/iglib/html/index.html

26

Sandbox

27

