I. GreSovnik: Coordination of Software Development

Coordination of Software Development in
COBIK and Laboratory for Multiphase
Processes

Revision 2, June 2011.
(Revision 0: November 2010)

Igor GreSovnik

4

5

6

I. GreSovnik: Coordination of Software Development

Contents:

1 Introduction & Background

... 1
2 Current state, ACHVItIES & PIANSoovviiceeeeiiie e eere e e e e e e e e e e eeaaaanes 2
2.1 CUITENT ACTIVITIES ...t tie e e ettt ettt e e ettt e e e e e e s smnnee e e e e e e e e b bbb et eeeeeeeeeaanne 2
2.1.1 Test case for NAFEMS heat conduction teSt iN G cee..ooiiiiiiiiiiieeie ettt 2
2.1.2 Choice of basic platforms for software development...............oeeiiiiiiiii e 2
2.1.3 SNOI COUISE ON CH..ooeiiiiiiiie et oottt ettt et e e e e e e e aaa e neestbebbe e e et eeeeeaaaaaaaaaeasaesaaaannns 2
2.2 = o PR PP PO PPPPPPRRPPR 3
2.2.1 Main Tasks and ASSIGNIMEINESuuuuieiiiiiiiieieeeeieteeeeee e e s e e tessss st aereereeeaaaeaseesassaaannnennsrssansnneereees 3
2.3 Motivation and JUSTIFICATIONcouiiiiiiiiiie e e e et e e e e e e e 9
2.3.1 Statement Of ODJECHVESuuiiiiieeee ettt e e e e e ettt e et e e e e e e aaaaaaaaaaeas 9
24 Overview of NUMEriCal lIDrari©S.uuuueiiiieiiiiiiei e 10
2.4.1 Numerical Libraries Available fOr C.........occeee i 11
2.4.2 Numerical Libraries Used Within the GroUpcccce oo 12
2.4.3 Graphical Libraries Available fOr CH..........ccceiiiiiiieeee e r e e e e e e e e e e e e e s aa e 13
2.4.4 Graphical Libraries Used Within the GrOUPcceeeeiiiiiiiiiiecee e e e e 14
2.5 Internal Codesooecvviviiiieiiieeieieeeene s 14
2.5.1 Code for Continuous Casting Simulation in StoreeBterk (Robert Vertnik)cccccov i 14
3 Establishment of Systematic Software Development...........cccceeeveiiiiieeeeieieeeeeeeeeeeee, 14
3.1 [=T 0 PP PPPPPPR 15
3.2 Choice of Development Platform......... oo 15
(@ 0] 110 07411 (0] o T 1o Yo | F= R RURRR 19
4.1 Basic Optimization SCHEMEuuuiiiieiett e eeevseeeveestreeereraererer s aaae e s aasassssesssssssesnrrnnnnnes 19
411 NOtES 0N NOMENCIALUIE......ooiiiiiiie e oottt ettt e e e e e e e e s e e e e aannbabbbebeeeeeeeeaaaaaaaaens 21
4.2 Data Exchange Between Optimization and Direct ANAlSiSoovviiiiiiiiiiiiiiiiiiiiiiiiieemnen 24
4.3 Optimization Shell — Things to be DONE FirSt....m .o, 26
Use of IgLID @S Base@ LIDIaryccooo oo 27
5.1 Y o T 01 L€ I o TN N i 27
5.2 IGLID LICENSE AQIEEIMENT .. .uuuuiiiiiueieutseeesmmmreseeesessssssssessssssseesssesssssnnsssns nnssnssssssssssssssssnnnnnns 30
2 N € -V o T | £ EEEPRURR 3L
5.2.2 Statement of Intention and ODlIgatiONS. ... eteeeiieiieiiiie e e e e e 31
N T B 1L~ Tox =11 1= PP UUUURU PSRRI 32
5.3 Possible future License Agreement for IGLID ... 32
5.4 IGLID README ...ttt ettt e ettt e e e e e e e s be e e e e s s s bbb e e e e e e e e e e e annne 33
General Management of Simulation Framework - SUGe8S..........ccccceveeeeiiiiiiieiiiiiiiinnnns 5.3

1. Introduction & Background Coordination of Swdire Development

1 INTRODUCTION & BACKGROUND

This is the cover document for coordination of dtiés related to software development in
Prof. Bozidar Sarler’s groups at COBIK & Universdl/Nova Gorica.

In COBIK (Centre of Excellence for Biosensors, tagstentation and Process Control) we
hve a roughly 3 years long project with the aimdefeloping software for numerical simulation
and optimization of arc-discharge reactor for pain of fullerenes and carbon nanotubes. A
Ph.D. student will develop a numerical model basedollected literature, while | will be in charge
of developing software for optimization and inverdentification of model parameters (adopting
and refining some ideas developed in 10ptLib [4]).

In the Laboratory for Multiphase Processes, extenknowledge has been accumulated in
the field of numerical simulation with meshlesshgiques, with years of experience in modeling of
physical phenomena related to solidification of atetand collaboration with steel and aluminum
production industry. However, software was devetbpa ad hoc basis, development was mainly
done by Ph.D. students each of which developeduaad his/her own code. Such approach turned
effective in the past, but poses a number of linate for further development. As problems to be
solved in the future are becoming more complexerdisciplinary and interwound, the need for
more systematic and correctly managed softwarelol@vent bocomes evident.

It was decided that | will initiate and lead devy@izent of a common simulation framework
that will be used in the Laboratory for MultiphaBeocesses, and also shared by COBIK for
development of numerical models of fullerene praiduc The development of this framework will
significantly improve efficiency of software devploent in the group, it will provide a platform for
permanent inclusion of research achievements, ahdimplify introduction of new employees
into working proces. The framework will be designedfeccionally, it will be scalable, extensible
and modular. Initial momentum will be provided bgw Ph.D. students while current work (of
Gregor Kosec, Robert Vertnik, Umut Hanoglu) will flewly added later to enable transition from
existing codes to a common simulation code. Thenéwork will be intended for both academic
work (including Ph.D. theses) and for developmdnindustrial applications, which is a particular
challange in code design. Joint use by UNG and GO&Il be beneficial for both institutions and
will cause additional synergetic effects.

The present document was created to detail thes idebhow software development will be
organized, to argue and clear important detailb ssscchoice of platforms, etc.

2. Current state, Activities & Plans CoordinatafrSoftware Development

2 CURRENT STATE, ACTIVITIES & PLANS

2.1 Current Activities

2.1.1 Test case for NAFEMS heat conduction test in C#

Task leader: Robert
» Check for numerical and graphical libraries thateavesed in FORTRAN codes (or
possible substitutes) — Robert
* Development of a small simulation code — Robert
0 Help with input files reading and input forms — tgo
» Setting up the test and checking results — Robert
» Overseeing the development — Igor

2.1.2 Choice of basic platforms for software development

Task leader: Igor
» Starting activities — Igor, Robert
» Search for libraries availability on different gaims — Robert, Igor
e Setting up basic requirements - Igor
» Evaluation of platforms with respect to requirensentgor, Robert, ...
* Inclusion of group members for remarks, commeniggsstions — Igor
o Collection of information about what individual gq@@ members are working
on, which are their requirements in terms of sofewawhat are main
interactions with others. Information is gatheredindividual meetings. -
Igor

2.1.3 Short course on C#

Reading:

2. Current state, Activities & Plans CoordinatafrSoftware Development

* Harness the Features of C# to Power Your Scier@ifimputing Projects

Task leader: Igor
» Information about intended course, scheduling
* Preparation of material
» Performing the course
o Delivering individual topics
0 Suggesting exercises & additional reading
o ldentification of possible issues, help to overcahem

2.2 Plan

2.2.1 Main Tasks and Assignments

2.2.1.1 Construction of general framework — Robert, Igor, Gegor Kosec

A complete simple example (NAFEMS heat conlductes) is first coded in C# - Robert
On this example, basic structure will be creat&bbert, Igor, Gregor

Basic design requirements:
» Easy switching between 2D and 3D
 Easy coupling with other numerical codes, e.g. nttar code with external
mechanical code to obtain plastic heat generation
* Enable micro-macro modeling
* Enable re-meshing
* Enable multiple joint domains with different matdrproperties and possibly with
different physical laws, but with shared boundasaesd therefore shared simulation
point co-ordinates
» Extensible material properties
o Enable definition of material properties throughteemal calculations,
consider various arrangement, e.g. accumulatioougir time stepping
procedure, cases where storage of history variablesjuired
* Enable non-local time and domain effects (limited umlimited domain), e.g.
relaxation
» Flexible definition of material properties and c¢l&aefficient rules to access them

2. Current state, Activities & Plans CoordinatafrSoftware Development

2.2.1.2 Linear Solvers

Somebody keeps tracks of linear solvers suitableirfolusion in the framework and
accessible under suitable conditions. Also implasamclusion of the solvers, including design of
how libraries are included, implementation of wraggy and inclusion in the standard class library
of the framework.

Main requirement for solvers one should consider:

» Efficiency
o Efficiency of system of equations assembly
o Efficiency of the solver itself

* Integration suitability
o Prices
o Compatibility of licenses
o Platforms for which the specific solver is nativalailable

For large scale industrial problems, solvers hdweost always the predominant impact on
the overall CPU efficiency of the simulation codlisually, not using a solver with sparse storage
also has adverse impact on memory usage. Somehodidgherefore maintain a good overview of
what is the current state of solvers market, ammdishbe skilled in integrating a variety of solvers
into the simulation framework.

Licenses should be carefully examined before imtidgg a particular solver into the
framework. Some licenses (in particular some opemce licenses) will not be compatible with our
framework because of the restrictions they impésgpical example is the GPL license, which de
facto requires that if some software is linked wilik respective libraries (the term used by the fre
software community is “derived from”), its free apsource must be provided under the GPL
compatible license, which in effect bans many gmedbusiness models for generating revenue by
your software. In the case of proprietary licendhs, license cost may be a limiting factor what
regards usability of the solver. Some licensesireqpayment only for development versions, while
compiled code linked with your application can keefy distributed to the users of your software.

Solvers are typical example of functionality for iath we will probably have to consider
linking of code written for different platforms. his because many solvers are available only in
lower level native programming languages (such aB@RTRAN or even partially in assembler)
due to their performance critical character.

Within the software framework, there should be &ue API (application programming
interface) for interacting with the solver. All tin solvers should therefore be wrapped into such
an interface, such that usage of the solver isoumifto developers.

Many top-end solvers are commercial. While freewareivalents exist, they may be much
less efficient. By defining a common API for allhsers, it will be easy to switch between different
solvers (it must also be possible to do this dyralty at the application level). In this way, wenca
use expensive commercial solvers on high perforeaystems used to run industrial simulations

2. Current state, Activities & Plans CoordinatafrSoftware Development

or in commercial installations of simulation soft&aat customers. For development on local
machines, freeware substitutes can be used.

2.2.1.2.1 Graphics

Suitable graphic tools should be gathered or implged that can be used to represent all
possible kinds of results that can be generateatidgode.

Graphics is used for viewing and quick verificatiohresults, for inclusion in reports and
articles, and for presentations. It is important éievelopers to have easily accessed tools for
presentation of results, which enable first veaifiocn of their code, and it is also important to be
able to produce quality, readable and good lookamyesentation of results for inclusion in papers
and presentations. Graphical representation oftsestll usually create the first impression of our
work to potential partners and customers.

There are two main approaches to graphical repta&sem of data. One can either use an
external graphical engine (such as GnuPlot, Mattiemar Matlab) and export graphics in format
that is understood by such software, or can shoavexport graphics by using library routines
linked to the code that produces and manipulatesi#ba.

The first approach may seem easier and quicker fteweloper’'s perspective because the
external engine provides many high level functidpasuch as decorating graphics with titles,
labels, gridlines, coordinate marks, etc, or usgeraction capability for zooming in and out,
rotating,, exporting in different formats, etc.

On the other hand, use of external engines isflesble because high level functionality is
not so easily extensible, it requires cumbersomepgmation of output (which may include
generation of scripts), and it usually takes sorser unteraction in order to properly transfer the
presented data to the graphical software. Frompiist of view, developing and using a graphics
layer based on good general purpose graphicatiésranay be a better choice, and should be a long
term solution for graphical processing. A good diegl library that can be well integrated with
GUI module can enable, after a small initial inwesht, much faster generation of results as the
approach with external engine.

Building general graphic utilities for the simutati framework is extremely important on
long run, but is quite low on priority list as coarpd with other functionality. On the other hand,
developers will miss such functionality a lot uritiis provided. The main problem with graphics is
that it spans several levels in software hierarcyl valid implementation requires a lot of
programming knowledge and experience, which we latdk badly before the development team is
well-trained. The solution envisaged is that peopdm develop different temporary ways of
graphical presentation of results, but try to impéait these in such a way that others in the team
can use them and also contribute to them. Whatanelo in the very beginning is to make research
of possible candidates for graphical libraries amgplement some basic stuff based on these
libraries.

Requirements that should be considered well wheangalecision about the base graphical
libraries of the framework are the following:

2. Current state, Activities & Plans CoordinatafrSoftware Development

» Ability of generation of different output formats.

0 At least one general vector format should be inetud

* Good use of graphic hardware (for efficiency rea3on

» Good graphic capabilities (quality output withowfects, smoothing, interpolation,
definition of lights, transparency, shading, etc.).

* Availability of general high level functionality sh as presentation of data based
either on meshes or clouds of points, calculatibsursfaces from volumetric data,
generation of contour plots, cross sections, propaiering of intersections, etc.

 Good presentation of different mathematical objesteh as meshes, vectors,
contours, streamlines, etc.

» Possibility of generating animations programmalycéither built-in or achievable
through generation of frames that can be used bgreed libraries to show and
export movies).

* Implementation of various decoration utilities suah titles, labels, grids, boxes,
value marks, etc.

» Good integration with GUI development (e.g. graphiwindows enable capturing
events, transforming views and light positions timight forward), possibility of
integration with graphical GUI builders, etc.

» Availability for different platforms (we should e.gbraries that are available for
.NET but not for MONO, and vice versa)

» License limitations

o Should not ban any of intended uses of the platfamotuding commercial or
open source sistributions

o Cost; it is very desirable that the library is fge@vailable. Somewhat
acceptable alternatives are development licensesrewtyou pay per
developer but can distribute the products withaldglitonal costs.

Payable libraries may provide more functionalityt twould make the framework much less
attractive for open source distributions. PossiBl@utions may include using two
presentation layers where one is free and lesbtapnd the other is payable.

2.2.1.2.1.1 2D Graphics

2D graphics for simulations can be based on theedamry as 3D graphics, or it can be
based on a separate library. The advantage of tisengame library is more unified development
and less effort necessary for introducing new dgpais. On the other hand, a specialized 2D
graphic library may be easier and more efficienige. We can therefore begin with developing 2D
graphics on a separate library and later re-impitgrinctionality and integrate it into the common
2D/3D system.

Beside 2D graphics for presentation of simulatiesuits, we will also need charting
abilities for plotting various dependencies. Thigynbe implemented as a separate module based on
a separate specialized library because such lsraran have very specialized and elaborated
features for this purpose (an example of thisesaddgraph library).

2.2.1.2.1.2 3D Graphics

2. Current state, Activities & Plans CoordinatafrSoftware Development

We currently don’t have a 3D simulator, but 3D driap can be generated from 2D slice
models and most likely we will need to developyD simulation tools in the future, too.

Since developing 3D graphics can be a relativeipateling task, we can do this in smaller
steps each time we need something, and develop ra general module later after gaining
extensive experience.

For a final solution there are different optionse \ébuld utilize some external engine such
as GID that is used for mesh generation and prasentof results in finite element. This could be a
quick and easy solution bringing some other benéfiich as meshing). However, | would argue
for use of a graphic library because it can beebattegrated in out system and this approach would
allow more freedom and flexibility.

There are some easy-to-use free libraries avajlableh as DISLIN. The alternative are
more basic libraries, which are more difficult teey but on the other hand provide much more
power. A very attractive candidate in this categaguld be the VTK library (Visual Toolkit),
which has a lot of powerful features, can produeey\attractive and clear output when used
properly, and incorporates built-in user interactidilities. It would definitely be a good long-ter
choice because it would probably meet any requingriiat we could have in the future, which can
outweigh the smoehow larger effort needed to usehi library is wide spread in very demanding
medical applications.

2.2.1.2.1.3 Integration of Graphics

One part of graphic modules development is devetpinof well structured 2D and 3D
libraries, which developers can use very efficietdl present anything they want.

The other part is integration of graphic capalesitcreated in this way into the simulation
framework. This includes definition of user intexéa such that the user can interact with simulation
software and its pre- and post-processing capasiltithout having contact with the code.

Typically, user interfaces will be in form of GUut there can also be a more flexible user
interface, e.g an user interface built around serpneter.

Graphics will typically be integrated with simulati code in the top-most software layer.
Integration in lower layers is also possible, éngthe case where real-time graphics is required.
However, this must be implemented in such a way tloacrete implementation of graphics is
completely separated form the code (by using attstraproperly) and can be hooked on the code
on demand. This hooking should be preferable implged in such a way that any other processing
could be hooked on instead of graphics (or in &oldito graphics), e.g. procedures for exchange of
data with coupled simulation codes.

2.2.1.3 Geometry Definition, Presentation and Mesh generabin

Goal is to establish a system for definition of @d&x geometries, use of geometric
definitions within simulations (e.g. for contactteletion and calculation of contact terms).

Wish list:
1. Geometric definition used in the framework shoull dompatible with standard
CAD formats.

2. Current state, Activities & Plans CoordinatafrSoftware Development

2. Meshing tools should work with abstract geometraafinitions, either directly or
indirectly (with intermediate transcription of geetry into mesher-native formats.).

3. Reverse should also be possible — to generateaabgijeometrical models from
meshes (either non-deformed or deformed).

4. It should be possible to manipulate geometricahdtedns from the code.

5. Presentation module should be able to show resultsmeshes superimposed to
geometrical definitions (preferably with ability @ssign define transparency and
other optical properties to graphical representatibgeometry).

Definition of geometry of simulated objects is latk with representation of continuum
geometry used within the numerical models, theeefgood integration of both is of primary
interest. At least in the beginning it is not féxdeito develop a full scale CAD representation of
geometry, therefore the emphasis will be on seangggration of existent tools (such as CAD
systems and meshing tools). Choice of the rightrsoe to rely on is very important for this task,
and tools for importing, exporting, and interactioh native geometrical representation of such
systems will be considered. This also means thetrial geometry representation will be built, with
efficiency and compatibility issues always keptmmnd and with knowledge of that continuously
updated.

2.2.1.4 Definition of test cases

Since the beginning we should maintain a set dfdases. When the system evolves, test
cases (i.e. input formats, formats of results etdl)be changed as we go.

Test cases are maintained in order to enableotioaving:

» Enable testing of correctness of code

» Testing of efficiency (e.g. when studying a newso)

* Testing that nothing is corrupted when new fundiliy is added or existing
implementations are modified

* Following of stability of the code with respectitgut/output formats, etc. (we will
strive for invariability backward compatibility ahput formats, a much as this is
feasible without affecting efficiency and good dgsof the code).

* Quick demonstration of software capabilities fotguial customers and partners

* Quick and plastic introduction of newcomers inte ttode (code structure as well as
pure usage).

There will be a growing set of test cases. Mainmeraof some can be dropped in order to
reduce maintenance costs, especially when thearage is replaced by more elaborated tests.

We will maintain some test cases particularly fdueation purposes. This will enable

somebody to learn about just specific portionshaf tomplex system almost as effectively as if
he/she studied a simple code including just theamahsubset of functionality.

2.2.1.5 Industrial Applications

2. Current state, Activities & Plans CoordinatafrSoftware Development

2.3 Motivation and Justification

2.3.1 Statement of Objectives

Primary goal is to establish systematic and quatigvelopment of simulation and
optimization software based on modern softwareitacture and managed according to generally
recognized good practices of software developnigns will include:

* Design and systematic development of code base
o Basic libraries
* Modular development
= Logical hierarchy
» |dentification and inclusion of standard set of ezrtl libraries
(paying attention to possible license conflictsalgy and usability of
libraries, complementary libraries to avoid ovepeg, etc.)
o Common simulation framework
o Common optimization framework
o0 Applications
» Establishment of procedures and tools that willbémaeam work and quality
assurance
o Definition of coding standards (examples are [14l §2], but ours will be
quite different)
0 Systematic software design in order to achieve:
* Modularity
= Extensibility
» Readibility fo code
» Efficiency of work
* Minimal doubling of work
Setting up revision control system (probably Subize)
Definition of testing procedures
Itroduction of Peer review
Division of assignment within the group (e.g. tegtitaking care of software
and hardvare)
Arranging optimal knowledge covering and divisioh specialties (with
partial overlapping to ensure availability of soiéint development potential
for any upcoming task)
» Development of key products that can be marketed:
0 General purpose libraries
» Especially free & open source

o0 General purpose simulation framework and generapqse optimization

framework (can be stand-alone, but are also pegrated)

o O O0OOo

o

9

2. Current state, Activities & Plans CoordinatafrSoftware Development

= Academic and demo versions for popularization afweork
» Commercial releases when mature enough
» Architecture: common framework with modules for tmadar
disciplines (e.g. thermal, linear mechanical, ptastetc.) and
techniques (e.g. domain decomposition, micro-macdiscrete
elements, etc.)
» Development of tailored applications by demands(iki what is done now for the
most of the time):
o Based on common framework in order to enable rdpictlopment
o0 Coding standard released in order to meet deadlines
o Introduction of standard project management teakgsqvith time
o Gradual division of work to development and shert¥t project work

2.3.1.1 Considerations

Establishment of systematic development of coderdarg to high level quality standards
will take quite a lot of effort at the beginninghi¥ must be considered a long term investment that
will pay off in the future, especially by:

* Increasing efficiency of development (especiallypogvention of doubling of work,
continuous accumulation of useful code, good docuati®n, etc.)
* Increasing quality of code
o Established quality assurance procedures will golybhe more and more
often required by customers, therefore this is s&aey to keep us in the
business
* Popularizing the group by releasing recognizabbelpcts
» Ability of rapid delivery of customized servicesdaproducts on demand, which is
very important for industry (which usually has tigleadlines)

The most difficult will be transition period wheadot of decisions will have to be made that
are not so obvious. Introduction of more systemsdtiftware development should not disturb the
ongoing work too much, but it should still be quiekough if we want to achieve the desired
effects.

Applications that are already working in productemvironment or are close to completion
will be left as they are, at least for quite somget Support for these applications will be prodde
in the same way as before. Only when enough “msettcumulated, some old applications may be
replaced, especially those that have good prosparctise future.

2.4 Overview of Numerical libraries

We need the following:
* Matrix operations (practically everything is neededoptimization)
» Sparse matrix operations (decomposition, eigensgaiterative solvers)
» Special functions
* Fourier transformations

10

2. Current state, Activities & Plans CoordinatafrSoftware Development

* Numerical integration, interpolation, splines,
* Ordinary differential equations,
* Smooth optimization

2.4.1 Numerical Libraries Available for C#

2.4.1.1 Math.Net ,Math.NET Numerics

Already used by IGLib. LGPL license for the numatripart.
Readhereabout sparse matrix support.
Features ofridium (numerical part):

» Extensive full matrix support, including LU & decpwsition, eigenvalues, SVD
decomposition, basic operations such as matrix sattom& multiplication, norms,
etc.

» Complex type with many operations

* Non-uniform probability distributions, multivariathstributions, sample generation

* Polynomial interpolation, splines

* Numerical integration

* Fourier transformations

» Special functions, constants

» Combinatorics, polynomials

* Fully managed, object oriented styéxtended by IGLib

Math.Net numerics: Math.Net Iridium and dnAnalytieve merged into this library.

2.4.1.2 dnAnalytics — merged withMath.NET Numerics

2.4.1.3 DotNumerics

C# implementations of Kapack, Blas and Eispack.oAiscludes some methods for
differential equations and unconstrained optimaati

2.4.1.4 ILNumerics

The library does not currently support sparse moedri but this is promised for the future

(seeFAQ).

11

2. Current state, Activities & Plans CoordinatafrSoftware Development

Features:
* Linear algebra: LU, QR, SVD, and Cholesky decompmss, eigenvalues,
eigenvectors
* BLAS, LAPACK
* Object oriented design

2.4.1.5 Alglib
Multi-language library, includes various numerioalitines, from sparse sources.

2.4.1.6 IMSL

Commercial numerical library, it is available fo#.C

2.4.1.7 Extreme Optimization

Commercial, for .NET, also includes sparse matrices

2.4.1.8 NMath
Commercial .NET library, also includes sprase rmati

2.4.1.9 Mapack.NET

Here is theoriginal web site It seems this library is not developed any maogeaose in
versions found on the internet it is stated thatlihrary is for .NET 1.0. It implements basic full
matrix operations in pure C#, the library is simjgeuse.

Statement:

Mapack is a .NET class library for basic linearedlga computations that supports a large
number of matrix operations and properties.

It supports the following matrix operations and pedies: Multiplication, Addition,
Subtraction, Determinant, Norm1, Norm2, Frobeniwsry Infinity Norm, Rank, Condition, Trace,
Cholesky, LU and QR decomposition Single Value Degosition, Least Squares solver, Equation
System solver and Eigenproblem solver.

The algorithms were adapted from Lapack and tha B#atrix Package.

The Mapack.zip download package contains both itheaty and the C# source code.

2.4.2 Numerical Libraries Used within the Group

LAPACK (Linear Algebra Package).

12

2. Current state, Activities & Plans CoordinatafrSoftware Development

2.4.3 Graphical Libraries Available for C#

2.4.3.1 ActiViz

Pricing

A good long term choice for graphical library woydobably be VTK. Currently there is
only a commercial C# implementation calledtiViz available. Single developer license costs 2900
$. The library is also available free of charge farsonal use, but in this case it can not be

redistributed and it prints a watermark on eaclplgr&ossible solution is that we by one full licens
for compiling of commercial applications, while penal licenses are used on individual machines.

2.4.3.2 Microsoft WPE (Windows Presentation Foundation)

Included in .NET, but WPF livraries are not incldde Mono framework (it is a question
whether they will ever be)!

2.4.3.3 EyeShot(Commercial with trial version)
Recommended by Tomaz Tekavec. Sais it's a gooalriibr

2.4.3.4 Microsoft XNA

This is aMicrosoft platform for game developmeim .NET. It probably doesn’t have the
right license in order to use it in our code depeatent, and it can also not be used on multiple
platforms. However, game engines can be one ofitioase libraries for computer graphics in
simulation framework, therefore it could be benefito look at it a bit.

You can start with examples, and you can obtainespite examples from Visual Studio’s
Extension Manager (under Online Gallery/TemplatégXXGame Studio). You can open the
Extension manager through the main menu/Tools/ExterManager.

2.4.3.5 DISLIN

Library used by Robert. It seems that DISLINaigilable for C#Library is free for non-
commercial use, for commercial us@as affordable prices

2.4.3.6 ILNumerics

Also includesgraphical library but the problem is that it is available only und&PL
license, which limit possibility of use in commaakapplications. It is also the question whether th
library is strong enough for our needs.

13

3. Establishment of Systematic Software DevelopmenCoordination of Software Development

2.4.3.7 SharpGl
C# wrappers for open GL, probably not strong endoglus.

2.4.3.8 Vislt

Vislt is interactive software for scientific visuedtion. Maybe numerical software could be
integrated with it as a plugin.
Free open source (BSD license)

2.4.3.9 ParaView

Open-source, multi-platform data analysis and \izaton application, BSD license, works
as client-server.

2.4.4 Graphical Libraries Used within the Group

2.5 Internal Codes

This section contains data about computer codeshidnge been developed or are being
developed within the group.

2.5.1 Code for Continuous Casting Simulation in Store Stelwork (Robert
Vertnik)

3 ESTABLISHMENT OF SYSTEMATIC SOFTWARE DEVELOPMENT

14

3. Establishment of Systematic Software DevelopmenCoordination of Software Development

3.1Plans

» Connect current codes with interfaces
o Integration mainly by data exchange through files
* Uniform development of code
» Establishment ofevision control system- Subversion server
» Establishment of issue tracking & ticketing system
* VPN for access from anywhere

3.2 Choice of Development Platform

We will strive to concentrate all software develagmn on one or two development
platforms. According to the nature of our work, thain criteria for choice of these platforms are:
» Efficiency, especially in terms of CPU usage
» Availability and price
* Well elaborated language concepts suitable forldpweent of complex applications
* Availability of numerical libraries
» Availability of suitable representation layer
o Graphical libraries with good 3D support, suitalde representation of
scientific results
o Possibility of good integration with GUI
* Availability of basic utilities
o0 Input/output
o GUI building
o Database connectivity
0o Web communication
» Avalilability of other libraries
» Possibility of deployment of stand-alone applicasio(independent of expensive
packages)
* Portability
» Support (documentation, examples, etc.)
* Prospects for the future
* Popularity

Figure 1 shows main groups of programming languages

Due to extensive base of readily available matheaatnumerical and graphical tools,
Mathematicaor Matlab could be used as basic platforms. However, thexesame disadvantages

15

3. Establishment of Systematic Software DevelopmenCoordination of Software Development

related to these systems, in particular dependenaelatively expensive commercial package, not
very comfortable programming environment (languagyntax is not designed for rapid
development, debugging is quite difficult), slowm@s comparison to other languages, bad support
for GUI building and system tasks such as inpupoubr web communication, difficult integration
with other environments, etc. For these reasonsyoiild be better to use such systems for
specialized tasks when sensible, and build intedadth other software in such cases.

The most perspective candidates for the developplatiorm seem to be C++, Java and
CH#.

Advantages of C++ are speed, rather good objeentmi language design, and wide
availability of numerical and graphical libraridBecause of wide availability of compilers for all
platforms, portability of products is relativelyamh Still there are some subtle differences between
different C++ compilers and even between implenteria of the same compiler on different
platforms, which can be rather annoying when pgrtapplications. Portability is particularly
problematic in the area of GUI and other systemeddpnt things such as database connectivity,
web communication, etc.

Alternatives are managed Java and .NET (with C#retton environments. As compared to
C++, the main difference is that Java and C# dchawe pointers. Because of this, coding is much
easier, especially for unskilled programmers, dredwhole range of possible programming errors
(many of them very persistent and difficult to aiger) vanishes on this account. On the other hand,
the programmer does not have complete control dyramic memory deallocation (since this is
automatically performed by runtime environment'shgaye collector), which can be accompanied
by performance penalty in some cases, especiakyemtiever memory handling can exploit system
architecture in order to achieve peak efficiencgt ¥n the other hand, such intended optimizations
require very high programming skills and are ofteh exploited anyway.

One great advantage of Java and C# frameworksighby rigorously standardize a very
large code base across all platforms on which #reyavailable (including GUI, input/output, web
communication, database access, etc.). In pantjcldea comes with a large standard set of free
developing tools and wide standard codebase incatgm in the framework. Hwever, the .NET
framework with C# is more elaborated and enablesemefficient development. The Java
programming languages has some deficiencies teanherited from the past (since Java was the
first widely used platform of this kind, while .NEdevelopment has started later and incorporated
many lessons learned from Java). For example, daga not know calling by reference, generic
types in Java are much more limited and do notrenype safety to the extent as C# generics do,
GUI building tools are much more elaborated in G#rmaJava and the same is true for many other
specialized areas (e.g. thread synchronization stpphich is very important for numerical
applications). Building large applications is mwgmpler in C# than in Java. It also seems that C#
has currently much better development potential thava, and it should be the preferred choice.

What concerns the development environment and lpbtya Java has some advantages
over C#, but these do not prevail. The situatiothv@# is as follows. On Windows OS, the best
development environment for C#NMicrosoft Visual Studiolts Express editions available free of
charge and it has all functionality most of develgpwill ever need. It lacks support for some

16

3. Establishment of Systematic Software DevelopmenCoordination of Software Development

specialized tasks, e.g. for building web serviddse solution is then that developers who would
deal with these things are provided with payabtdgasional versions of Visual studio while others
use free versions.

Cross platform open source implementation of .NEUO &# development environment
exists and is calleona Mono does not include everything that MicrosdfET implementation
(available only on Windows and Mac) does but mdghe libraries we would need are available
(including Windows Forms for GUI). Apart from whigt missing in Mono, both implementations
are compatible, there this should not be too much problem when we would need to port C#
applications to other platforms.

The .NET framework provides an extensive systerabyi@arranged code base and C# is a
highly elaborated, simple to use and well desigolej@ct oriented language with many advanced
features (such as generics, strong type checkimgy dounds checking, detection of access to
uninitialized variables, garbage collection, suitgbfor deployment in distributed environments,
extensive internationalization support, well desdjrexception handling, reflection). Because of
this, C# is proposed as development platform for corgpglicationsincluding optimization shell.

For simulation core development platfarthe choice will be madeetween C# and C++
The advantage of using C# would be that majorityhef development is performed on a single
platform. But for C# to be acceptable, two basguanents should be verified, namely the speed of
C# code in comparison with C++ and the availabibfyimportant libraries such as numerical
(especially those for sparse matrices) and graplscéable for use with scientific and technical
computing).

Currently it seems that numerical libraries wilk be problematic.

For graphical libraries the situation is not welpred yet. It seems th&ISLIN that was
used by Robert is available for C#. A good longntehoice for graphical library would probably be
VTK. Currently there is only a commercial C# implemtation calledActiViz (actually these are
wrappers around the C++ library) available. Sirdgeeloper license costs 2900 $. The library is
also available free of charge for personal usejrbtltis case it can not be redistributed andirtpr
a watermark on each graph. Possible solution is wea by one full license for compiling of
commercial applications, while personal licensesused on individual machines.

Another concern in the case that C# is chosen radnpoW to port the existent softwatieat
was createth C++. The long term procedure would be to manuallysiate all the code form C++
to C# (we could also check whether automatic tedosd are available). This is not too difficult
since C# syntax is similar to that of C++. The maroblems would arise from pointers,
incompatible libraries, lack of multiple inheritana C#, etc. Another possibility would be to use
managed C++ available on the .NET platform. In ttase only parts of code where pointers are
used should be corrected. However, this solutiavalable only on Windows with .NET, because
Mono does not support managed C++.

See also:
* Harness the Features of C# to Power Your Scier@idimputing Projects

17

3. Establishment of Systematic Software DevelopmenCoordination of Software Development

Programming Languages & Frameworks

Native languages

Non-object oriented:
C
Pascal
Fortran

Object oriented:
C++

Interpreted (scripting) languages

e Tcl/Tk (general purpose)
Python (general purpose)

« JavaScript (web browsesr scripting)

* VBScript (common in MS applications)
PHP (web server scripting)
Mathematica (symbolic algebraic system)
Matlab (numerical & symbolic system)

Managed languages

« Java
.NET languages
o C#
0 C++/CLI (managed C++)
o Visual Basic

Figure 1: Main groups of programming languages with somermomrepresentatives.

CIL code

Other .NET
language

Figure 2: All .NET languages are translated to the commaoerinediate language.

18

4. Optimization Tools Coordination of Softwareve®pment

4 OPTIMIZATION TOOLS

4.1 Basic Optimization Scheme

Solution environment

| Control parameters

I

' I
' I
' I
' I
' I
| I
| I
' I
' I
' I
Iy fm— |
e i === === | Responsel |
. y Desgn ; functions 1 1
: I parameterg I : f e 11
b o e - - T N/ — |

' I
' I
' I
' I
| I
' I
' I
' I
' I
' I
' I
' I
' I

(task execution)
@ | Model 2
_____________ [E= |
I Algorithm parameters: I ks [0 Model 1
]
[o 2 . .
I' Initialization parameters (initial | S E Numerical analysis software
guess & step size) I @) f, c
' Tolerances I
|
I

Control & optimization software
(sensitivity or optimization)

|
I Results:

I . e
I Optimum, response sensitivities, local responseatsod

minimise f(x) xOR" (1) a)
subject to ¢ (x)<0, i0l b)
and ¢ (x)=0, JOE, C)
where l <X, <u, k=1,2,..,n. d)

4. Optimization Tools Coordination of Softwareve®pment

Figure 4: Example: statement of an optimization problem.

Initialisation (reading of starting guess
and solution parameters)

Optimisation loop

o o

Numerical ana}ysis

« Set parameters to current guess

e Prepare analysis input according to|
parameter values

e Rundirect analysis

Read input data

) Solve the problem
¢ Read analysis results and evaluate

the aobjective function
e Check for convergence and set a
new guess if necessary

Output the results

Write results and stog

L----------.l.---------

Figure 5: Solution scheme for optimization problems.

Take current optimization parameters

Prepare numerical model according to parameters

Run numerical simulation of the process

Extract the relevant quantities from simulatioruits

From measured data
* Read result file
» Extract relevant data

6. Calculate the response functions and eventualiy ¢ghadients
(in our case the discrepancy functipn

7. Store the response functions in output argumerdsetarn

gk

Figure 6: Numerical analysis: flow in the case of paramatentification.

20

4. Optimization Tools Coordination of Softwareve®pment

4.1.1 Notes on Nomenclature

When talking about optimization with people withaitensive background in the field,
missunderstandings are very common. Secdfidnshould provide some basic overview necessary
for clear communication between optimization, nupnaranalysis and industrial experts. It is also
good to fix some standard expressions which aemnafted in the context of optimization.

Functionf(x) in Equation {) a) that is minimzed in an optimization problesncalled
objective function Vextorx is a vector obptimization parametersOptimization problems can be
stated in such a way that there are more than dfectove functions. In this case we have
multiobjective optimization and in general therenc a unique solution to such a problem, but we
obtain a whole multidimensional space of solutiomoag which we can choose (which may be
impractical, especially when the dimension of dolutspace is more than 2 or 3). Other names are
sometimes used for objective function, suclmasit function cost function(which may sound more
appropriate when optimization problem is stated naisimization rather than maximization
problem),discrepancy functiorfespecially in the contect of inverse problems nehee measure fo
discrepancy between experimental measurementshasd approximated by a numerical model is
minimized).

Functionsci(x) andc;(x) areconstraint functions Equations 1) b) through T) d) (of which
first two involve constraint functions) are callednstraints Equations 1) b) are callednequality
constraints equationsX) d) are callegkquality constraintsand equationslj e) are calledbound
constraints Bound constraints could be stated as normal ggwanstraints with simple constraint
functionbs, but usually they are stated separabslgause they are easier to deal with for
optimization algorithms and because evaluatiorhefdorresponding constraint functions does not
require solution of the direct problem.

The set of all pointg in the parameter space that satisfy all consgatalled thdéeasible
setor feasible region Any such point is called feasible point

The objective and constraint functions (ifé), ci(x) and cj(x)) are collectively called
response functiongor simplyrespnse of the optimization problem.

The objective functions defined in accordance with what one want taehwhen stating
and solving the optimization problem (e.g. miniraakrgy consumption with constraint that time of
the considered operation function must remain undgain limit; or minimal discrepancy between
results of numerical model and experimental resaltsommon goal in inverse problems and model
calibration). In practical cases there can be ntizae one goals, often conflicting (e.g. we can also
seek for as small consumption of energy as posaitideat the same time as short operation time as
possible). In such a case, the objective functidhusually be defined as weighted sum of terms
that measure achievement of individual goals, orememnveniently some nonlinear functions of
such terms. For example, industrial problems camalsbe stated in terms of a common goal that
is overal cost or benefit. If it is known how engrgpnsumption or operation time affect the cost
then it is easy to compose an objective functiomfindividual terms. When this is not so obvious
in advance, some parts of the goal statement camoved to constraints, and this can be iteratively
varied until the solution obtained is as meaninfffulour practical situation as possible.

Constraintscan have two distinct purposes. In some casedrearts are a logical part of
the definition of the optimization problem and astated to goals we want to achieve. For example,
we want to minimize energy consumprtion in a forgnpmocess, but don’t want plastic deformation

21

4. Optimization Tools Coordination of Softwareve®pment

(or some complex measure of material damage) teegksome specified limit anywhere in the
formed part. The last goal is most logically stagexiconstraint. Sometimes goals that could be
stated as terms in the objective function are mdweecbnstraints in order to avoid the question of
weighting of objectives or multi-objective formulats.

Another purpose for stating constraints is to awemblitions that violate some physical laws
(e.g. material with Poisson’s ratio greather thd) Or solutions that are infeasible for some radtur
reasons (e.g. geometric constraints) or solutimrswhich numerical calculation of response
functions would be unstable. In these cases ibmetsimes necessary to ensure that none of the
points in parameter space where response functimngvaluated (by the optimization algorithm)
are violating certain constraints. Optimizationcaithms that are adapded to this requirement are
usually calledeasible methodge.g. "feasible sequential quadratic programming”)

A single evaluation of all the response functiomshe specified value of optimization
parameters is calledirect analysis A module that performs such calculation is al#erocalled
like that (or more precisely thdirect analysis modul®r direct analysis progra This can be as
simpel as a couple of lines of code that use sarab/tical expressions that define the objective and
constraint functions. It can contain evaluatiorsofme global approximation of response measured
on a real-life system (e.g. by a neural netwonk)olr case, thdirect analysiswill usually involve
a complete numerical simulation of the system iasgjon at the specified values of optimization
parameters.

Optimization parameters at which direct analysisadormed form thanalysis input The
values of response functions calculated by thectlimealysis at specific optimization parameters
form analysis output However, analysis output can in some cases dsngis only of values of the
response functions, but also of their gradientdwéspect to optimization parameters. Second
derivatives are also provided by the direct analyssome cases, although this is seldom the case.

When the direct analysis involves a numerical satioh or some other approximation of
the response (e.g. by neural networks), inputies¢ components does not directly coincide with
optimization parametes (tharialysis inpu), as well as output does not coincide with #malysis
output In order do utilize a numerical simulation foreusm solution of optimization problems,
proper_mappingnust be implemented between the analysis inpubgtmization parameters) and
input of numerical simulatignas well as between simulation output and theyaigmbutput(i.e.
response functions and possibly their gradientsis mapping is calledarameterization

At the input side, parameterization can be as ®ngsl arranging values of optimization
parameters to specific places of input file for muiwal simulation. This is the case e.g. when
optimization parameters represent material progeriivhich are directly read as simulation input.
In other cases parameterization is more complex,vehen a portion of optimization parameters
defines geometry of object involved in numericahglation. Such parameters are commonly
referred to ashape parameterdn this case, parameterization involves geneanationesh (used in
simulation) consistent witehape parameters

At the output side, parameterizatio usually cossift some form ofpost-processingof
simulation results and calculation of some meanihgiutput parameters that are arranged in
expression that define how response functions\akiated. For example, if the objective functions
contains external work applied to the system adrigdgt, then forces dot multiplied by displacements
must be integrated over time and object boundaayarReterization is therefore usually closely
related to the numerical method used in simulatmml must therefore be at least paritially

22

4. Optimization Tools Coordination of Softwareve®pment

performed by the simulation software. In some caaealysis output also contains gradients of the
response functions. In such cases the numericallaiion (or other kind of approximation, e.g. a
trained neural network) must be specially adaptegenerate this information. Such adaptations of
simulation software are commonly categorizedsassitivity analysisit seems unlikely that we
would build sensitivity analysis into our modelsarshort-term period (e.g. within the next three
years).

Optimization algorithms are used to solve optimaatproblems. The optimization
algorithm usually takes some user-specified inijaess and successively changes optimization
parameters in an systematic manner and runs @inatysis at these parameters in order to calculate
the response. Since the procedure must be autorfaati@almost all practical purposes, any
numerical simulation (or other procedure that useapproximation of response functions, such as
a neural network) must be able to be run in noeradtive manner, e.g. as program that is run via
command-line and terminates after simulation iskiad.

The termdirect analysisdirect analysis inpuanddirect analysis outpuare usedsomehow
ambiguously when describing software architectréhe strictest sense, the tedmect analysiss
used for a function that is called by the optimmatalgorithm to perform evaluation of
optimization respnse at some specific point inghace of optimization parameters. This is more
strctly called thedirect analysis function Different algorithms in different optimizationbliaries
usually require different forms of direct analyfisictions (with different signatures, i.e. number
and types of arguments). Some algorithms, for exangall separate functions for evaluation of
each individual component of the response (i.e. dbgective function, individual constraint
functions, and eventually the gradients theredff)our optimization environment we will define
one or two standard forms @nalysis function and will implement adapters (wrappers) for
algorithms that in their original form require @fent analysis functions. In this way we will be
able to combine any definition of the direct anmywith any built-in algorithm suitable for the
particular problem.

In a less strict way, the terdirect analysigs also used for a stand-alone computer program
that is able to read analysis input form files, nitaj@ input for numerical analysis, run numerical
simulation (or other kind of response approximatigost-process results, and write analysis output
to a file. We will define standard analysis inputdaoutput file formats for this purpose, and
implementdirect analysis functionsvithin the optimization system that will wrap thkéend of
analysis functions.

Definition fo the optimization problemrefers to the definition of how to calculate the
response functions. This is essentially the dediniof the direct analysis.

Optimzation environmentis a software environment that is used to defipgnazation
problems and to run optimization algorithms thdtwate numerical solutions to these problems.
Typically, optimization environment enables combim@a of different definitions of the direct
analysis with different solution algorithms.

23

4. Optimization Tools Coordination of Softwareve®pment

4.2 Data Exchange Between Optimization and Direct Ansily

Analysis request (analysis input file)

{{p1, p2, ... }, { reqgcalcobj, reqcalcconstr, reqca Icgradobj,
reqcalcgradconstr }, cd }

Legend:

pl, pl, p3 - optimization parameters at which analysis watopmed
Flags that tell whether something has actually lmedeulated (0 — yes, 1- no):
» reqcalcobj- flag for the objective function
» reqcalcconstr flag for constraint functions
» reqcalcgradobj- gradient of the objective function
» reqcalcgradconstr gradients of constraint functions
cd — a free parameter that can be used to transtbtiauhl information to the direct analysis. Inmiple cd
can be anything embedded in curly brackét$)(If only the eventual embedded curly brackets @aperly closed.
Most commonly it will not be used at all and theref empty brackets {}”) will be put in place ofcd. Otherwise,
interpretation of what stands in curly bracket i#irely in the domain of the analysis program, dfere the
documentation of the analysis program should peiniformation on how to compose.

Analysis results (analysis output file)

{
E pl, p2 ...},
calcobj, obj,
calcconstr, { constrl, constr2, ... },
calcgradobj, { dobjdp1, dobjdp2, ... },
calcgradconstr,

{ dconstrldpl, dconstrldp2, ... },
{ dconstr2dpl1, dconstr2dp2, ... },

}1
errorcode
}5
{ reqcalcobj, reqcalcconstr, reqcalcgradobj, reqc alcgradconstr }
<,{indl, ind2, ... }, { coefl, coef2, ... },d efdata >
}
Legend:

» calcobj- flag for the objective function

» calcconstr- flag for constraint functions

» calcgradobj— gradient of the objective function

» calcgradconstr gradients of constraint functions
obj — value of the objective functions
constrl constr2 ... - values of the constraint functions

dobjdpl, dobjdp2, ..— derivatives of the objective function with resp® individual parameters (components
of the objective function gradient)

24

4. Optimization Tools Coordination of Softwareve®pment

dconstrldpl ..., dconstr2dpl dconstr2dp2— derivatives of individual constraint functionsthvrespect to
individual optimization parameters — componentsgaddients of the constraint functions (edgonstr2dp3is the
derivative of the second constraint function wigspect to the third parameter)

errorcode— integer error code of analysis — 0 for no ertmyally a negative number for errors, values are
function specific

regcalcob, reqcalcconstr, reqcalcgradoband reqcalcgradconstrare request flags for calculation of the
various values, as have been passed to the an#éilygison. The same as with parameter values, tflags are
requested only for verification. In vast majorityaases these flags will not be used by the opttion program, and
they can simply be set to 1.

Analysis results (analysis output file) for multi-djective case

{
E pl, p2 ...},
calcobj, {obj1, obj2, ... },
calcconstr, { constrl, constr2, ... },
calcgradobj,
{ dobj1dp1, dobjldp2, ... },
{ dobj2dp1, dobj2dp2, ... },
}1
calcgradconstr,
{
{ dconstrldpl, dconstrldp2, ... },
{ dconstr2dp1, dconstr2dp2, ... },
}1
errorcode
h
{ reqgcalcobj, reqcalcconstr, reqcalcgradobj, reqc alcgradconstr }
<,{indl, ind2, ... }, { coefl, coef2, ... },d efdata >
}
Examples of analysis ouptut files
{{1.11, 2.22}, {1, 6.1605, 1, {-0.165, -2.44} , 1 ,{2.22,4.44}, 1, { {-
15,0}{0.,-2}}, 0%} {1,1,1, 1} {3, {}, "3"}}
{{1.11, 2.22}, {1, 6.1605, 1, {-0.165, -2.44} , 0 AL0, {1 -1} {1,
1,1, 1}, {33, 45}, {2.5, 3.33 38.1}, "3" } }
Alternative format: XML (analysis output) :
<l-- Analysis output file, created by analysis wrapper. -->
<data type =" " mode =" "ind ="1">
<ret type =" ">0</ret >
<reqcalcob; type =" "> 1</ reqcalcobj >
<reqcalcconstr type =" "> 1</ reqcalcconstr >
<reqcalcgradobj type =" "> 1</ reqcalcgradobj >
<reqcalcgradconstr type =" "> 1</ reqcalcgradconstr >
<calcobj type =" "> 1</ calcob] >

25

4. Optimization Tools Coordination of Softwareve®pment

<calcconstr type =" "> 1</ calcconstr >
<calcgradobj type =" "> 1</ calcgradobj >
<calcgradconstr type =" "> 1</ calcgradconstr >
<param type =" " dim ="2">
<vector_el type = "ind ="1">1.6</vector el >
<vector_el type = "ind ="2">1</vector el >
</ param >
<obj type =" ">0.20088905308774715</ obj >
<constr type =" " eltype =" " dim ="2">
<table_el type = "ind ="1">0.0</table el >
<table_el type = "ind ="2">0.0</table el >
</ constr >
<gradobj type =" " dim ="2">
<vector_el type = "ind ="1">0.24138</vector el >
<vector_el type = "ind ="2">0.0172418</ vector el >
</ gradobj >
<gradconstr type =" " eltype =" " dim ="2">
<table_el type =" " dim ="2" ind ="1">
<vector_el type = "ind ="1">-1.1</vector el >
<vector_el type = "ind ="2">2. 1</ vector el >

</ table_el >
<table_el type =" " dim =" 2" ind =" 2">

<vector_el type = "ind ="1">0</vector el >
<vector_el type = "ind ="2">-1</vector el >
</ table_el >
</ gradconstr >
<l-— Optional definition data: -->
<cd type =" ">Definition data</cd>

</ data >

Figure 7: Examples of data exchange file formats.

4.3 Optimization Shell — Things to be Done First

These things should be tone first, within say aysa period, dependent on other activities:

I/O Toolbox
o Parser
o0 Reading/writing analysis data
o0 Reading optimization data for standard algorithms
Analysis file client and server
o Standard exchange files and formats
o0 Basic components, e.g. synchronization with filstegn
o0 Integration with internal components
Optimization file client and server
Standardization of internal components
o Interfaces for analysis functions, result storagimization, etc.

26

5. Use of IgLib as Base Library Coordination oft®#are Development

Toolbox for response inspection
o Derivatives, smoothnes, optimality conditions, etc.
o0 Response surrogate techniques
Algorithm kit
o Gradient based
0 Robust
o ..?
Basic graphics
Rough application outline

5 USE OFIGLIB AS BASE LIBRARY

5.1 About IGLib.NET

Kaj je IGLib

Pred nekaj leti sem se odih da bom na novo zgradil framework za optimizaciJa naj bi med
drugim nadomestil tudi wno funkcionalnosti sistemanverse [8], vendar bi bil zgrajen na
drug&nih, bolj sodobnih konceptih z uporabo izkuSengdephbljenih v letih dela na optimizaciji,
numerénih simulacijah in tehdhem softveru. Ko je bil narejen koncepiversea, je bila
tehnologija na tem podéu nacisto drugem nivoju. Zaradi okotith se mi je zdelo bolj smotrno,
kot prilagajati obsto framework, postaviti novega od &ka.

Se bolj kot prilnverseu sem se Zelel lotiti zadeve sistertiadi in pri tem uporabiti dolgoletne
izkuSje na raztinih podrajih. IGLib ([5]-[7]) sem poimenoval osnovno knjiznico, nadatbi bilo
zgrajeno ogrodje. Knjiznice si nisem zamislil ld¢ bodlago za novi framework, ampak bolj sploSno
kot podlago za sistemadén razvoj tehriinih aplikacij. Njen razvoj sem vezal na nasledrgéera:

« IGLib bo prosta in odprta knjiznica brez omejitevugporabo. Na ta tim ne bo nobenih
ovir za pridobivanje partnerjev za razvoj, za meddao in interdisciplinarno sodelovanje
in za komercializacijo morebitih produktov razvitia osnovi knjizniceCe bo kdaj pozneje
v razvoj knjiznice vkljgenih ve& partnerskih ustanov, bodo od takSnega sodelovaeja
imele korist, ker jim bo takoj dostopno, kar sokwiou knjiznice razvili drugi.

« Moja z&etna motivacija za razvoj knjiznice je uporabael@a svojih projektih. Energija, ki
jo vlagam v sistematno na&rtovanje arhitekture, se mi povrne pri bolj efekiwm razvoju
kon¢nih produktov.

« Knjiznica bo odvisna od Stevilnih drugih knjiznia zazlgne stvari (npr. linearno algebro,
procesiranje signalov, risanje grafov itd.), pogajvse takSne zunanje knjiznice, ki so njen

27

5. Use of IgLib as Base Library Coordination oft®#are Development

del, pa je kompatibilnost licen€e bo pri razvoju neke aplikacije prav prisla kaksna
knjiznica, katere licenca ni kompatibilna z IGLihb pi zaradi tega priSlo do omejitev glede
uporave knjiznice), se vsi deli odvisni od te knjce zapakirajo v drugo knjiznico, ki pa je
seveda lahko odvisna tudi od IGLib.

« Knjiznica temelji na ogrodju .NET in je napisangeziku C#. Ker je .NET lastniSko okolje
Microsofta, je dolgoréno namen ohranjati kompatibilnost z ogrodjem Mdage prosta
odprtokodna (zaenkrat delna) implementacija .NE$-em bo zagotovljena prenosljivost
tudi na druga sisteme, npr. Linux.

« Velik poudarek je na sistemé&tiem razvoju in dobrem planiranju knjiznice. V zvezem je
postavljenih neakaj galnih pravil.

o

Ko se pojavi potreba po novem orodju ali funkciowesti, ki je dovolj sploSne
narave, da bi spadala v knjiznico, se pri implemeifitnajprej razmisli, kako bi bilo
to narejeno v okviru SirSega modula knjiznice, ékpva podrdje, kamor to spada.
Potem se navadno implementira samo spetifdel, ampak na tia, da je to
razSirljivo v konsistenten sploSen modul z dobrsta@jeno arhitekturo

Kadar preve sistematino vklju¢evanje funkcionalnosti ni smotrno (recimo, kadar bi
to zahtevalo preveenergije ali bi odvr&alo pozornost od treutnega cilja), se pri
implementaciji uporabi kompromis in se oZnala gre za del kode, ki Se ni zrel za
vkljucitev v knjiznico. V knjiznici bo ve lo¢enih nivojev in koda bo prehajala od
najbolj osnovnega (grobi osnutek za testiranje &ptwv) v zreli del, kjer se bo

tezilo k¢imvegji stalnosti.

V zrelem delu knjizice so postavljeni kriteriji dakumentacijo kode, izgradnjo
testnih primerov za testiranje funkcionalnosti mngh pravila za zagotavljanje
kvalitete kode.

Spodbuja se kolaborativni pristop, kjer imajo vgleteni korist od sodelovanja.

Spodbuja se mnogoterost idép ima vé ljudi razli¢no vizijo o tem, kako bi
implementirali isto funkcionalnost, lahko vsak rdirevoj modul in ga vkljai v
knjizico. Sasoma se bo pokazalo, katera ideja bo pridobilaiperabnikov in
razvijalcev.

« V dolocenem obdobju bom imel sam kontrolo nadrt@/anjem knjiznice, dokler ne bo
knjiznica dovolj razvita, da bo mozno vodenje rgavodi v SirSih ovirih.

Nekaj primerov stvari, ki so Ze vkijane v knjiznico ali so v razvoju: osnovna lineaaigebra
(brez razprSenih matrik), vmesniki za definicijonkeij, osnovni moduli za razvoj optimizacijskih
algoritmov, 2D diagrami, celovit sistem za javl@mapak in ostala spdfita, interaktivni ukazni
kalkulator, interpreterski moduli, ki omogmo uporabniku sestavo operacij, osnova za izgoadnj
vmesnikov preko datoteega sistema in podobno.

28

5. Use of IgLib as Base Library Coordination oft®#are Development

Ker imam dobro izdelano sliko o tem, kaj bi radagdimizacijskega ogrodja, imam zaenkrat to za
rdeto nit razvoja, hkrati pa imam pri &rdovanju vedno v mislih tudi SuirSo uporabnost.

Kako bi vkljuil IGLib v tvoje okolje in kakSne so prednosti

Knjiznico bi vklju¢il na podoben nan, kot jo vkljucujem v ostale svoje projekte, torej kot ks
knjiznico, kjer se na urejen in &réen n&in akumulira funkcionalnost sploSne narave, kigérgbna
pri sprothnem razvoju kamih produktov. Tisti del, ki je knjiznica, odtanelgt in obdrzi zgoraj
navedene lastnosti. Stvari, ki so Kan produkti ali vsebujejo algoritme in druge stvaki so
pomembne za skupino, bodo zapakirane v samostopoulm in aplikacije, ki ne bodo prosto
dostopne.

Prednosti uporabe knjiznice so rénk. Meni in pozneje tudi ostalim bo olajSala déder, vsebuje
veliko Ze narejenih stvari in se bo nabor teh $tgail na sistematien n&in. Knjiznica ima
homogeno zgradbo in temelji na enotnih in dodel&oitceptih, ki se bodo Se dopolnjevali.

Koncept knjiznice dolgomo omogdéa motiviranje strokovnjakov, da se pridruzijo ugmran
razvoju knjiznice. To prinese vzajemno korist vsekn,uporabljajo knjiznico, ker se pose
razvojni potencial, veuporabnikov odkrije tudi venapak, prispevanje k razvoju odprtih knjiznic
pa je tudi dobra referenca za tiste, ki prispev&oganizacija razvoja okrog taksne knjiznice
predstalvja tudi dobro osnovo za razvoj timskegda de razvojni skupini, omogo lazjo
povezljivost rezultatov zaradi dodatnega nivojangtadizacije, ki se spontano uporablja in razvija,
ter prispeva k hitrejSemu napredovanju razvojneganialatlanov skupine.

Ce se kdaj pozneje odiip da bi bilo bolj smotrno knjiZznico zapreti, sewedno lahko naredi tako,
da se obdrzi trenutno stanje knjiznice, ki se potarvija naprej |léeno od originala (ki bo ostala
odprta knjizica) in se dajo vse spremembe pod dhiagaco. Licenca knjiznice namtr@&e postavlja
kaksnih omejitev glede komercialne uporabe ali pl@¢k ali licenciranja izpeljanih produktov.

Povezava z mojim delom na splosno

Kot sva se Ze pogovarjala, si bom pri usklajevargavoja softvera prizadeval zamvecje
poenotenje razvoja in tesno sodelovadi@nov skupine pri tem. To pa ne pomeni, da vidim
dolgoraino IGLib kot osnovo za ves softverski razvoj. Mojeoda bodo tudi dolgotao dolaeni
deli razvoja softvera osnovani na drugih platformadt IGLib, npr. lahko se izkaze, da bo
simulacijski del najbolje osnovati na nativnem C¥+sploSnem ni zelo narob& se kot osnova za
razvoj uporabljajo dve ali tri platform&e za to obstajajo tehtni razlogi. TakSne ¢il@ so
dolgora@ne in nekaterih ne bo mozno sprejeti takoj. Bi @a.NET in IGLib zasnoval razvoj
povezovalne platforme, na kateri bomo integriraizvite produkte, to bo vkljievalo tudi
optimizacijsko lupino. V z&tni fazi bo povezovanje ragtih zZe narejenih delov sistema potekalo
preko vmesnikov med njimi, ki bodo v glavhem teifigla izmenjavi podatkov preko datdteega
sistema in sistemskih ukazov za poganjanje apjikd@k n&in povezovanja ni vedno najbolj
optimalen, kar se hitrosti¢e, je pa najbolj pregleden in obvladljiv, kar bonaSem primeru
prevladuj@éega pomena.

29

5. Use of IgLib as Base Library Coordination oft®#are Development

Spodaj navajam Se vsebino licence za knjiznicoseddo morda v prihosnosti Se dopolnjevala, cilj
pa je ohraniti vsebino zelo kratko in razumljivo.

==== Vsebina licence za knjiznico:

Opombe:

Nacrtoval sem, da bo IGLib nekopod odprtokodno licenco (glej spodaj pod possibitire
license), vendar moram najprej zagotoviti ustregtiamje knjiznice in zadostno kontrolo nad njenim
razvojem. To med drugm pomeni zadosten obseg kogzim zadosten razvojni potencial okrog
knjiznice, ki bo pod mojim vodstvom, da bom lahkagatovil, da bo razvoj potekal v pravo smer
(to med drugim pomeni, da bo knjiznica na dolgi ustrezala svojemu namenu in bo dobro sluzila
interesentom, med katerimi bi bil tudi Laboratarg ve&fazne procese). Do takrat bom obdrzal
malo bolj restriktivno licenco za knjiznico, ki bbkrati omoggila potrebno razpolaganje
interesentom in zagotavljala, da ohranim kontradal mazvojem knjiznice. Spodaj je predlog te
licence.

Za taien tekst licence glej navodila in dokumentacijd,([8]).

5.2 IGLib License Agreement

This is a license agreement for th&Lib utility library ("the softwar® and its documentation,
which are owned and copyrighted by Igor GreSovdéknova 80, Ljubljana. The software subject to
this license agreement includes all files that @etained in the software directory (i.e. the root
directory where this license file is located, atidta subdirectories).

The software and its documentation are developédcapyrighted byigor GreSovnik Ljubljana,
Slovenia (the authot), except for individual parts of the software fahich separate different
copyright notices are provided. The following terapply to all files associated with the software
unless explicitly disclaimed in individual files.

The author hereby grants the limited rights to thee software to the following licenseesh@
licenseey:

- Group of Professor Bozidar Sarler within the Latanafor Multiphase Processes of the
University of Nova Gorica; responsible person: BaziSarler.

- Group of Professor Bozidar Sarler within the Labamafor Supervisory Systems of the
Centre of excellence for Biosensors, Instrumentadiod Process Control; responsible
person: Bozidar Sarler.

The present license agreement is the agreementeéettihe author and the licensees that defines
the terms and conditions for use of the softwareusing the software, licensees accept the terms
of this license agreement. The responsible persiated above shall be responsible for execution of
the terms of this license agreement by the ind&fidicgensees.

30

5. Use of IgLib as Base Library Coordination oft®#are Development
5.2.1 Grant of Rights

The author hereby grants, and licensees herebyptaedject to the terms and conditions of this
Agreement, a nonexclusive, nontransferable and ssigr@able license to use the software in in
order to create Derivative Products.

Licensees can use, license, sell, and distrib@tie ginoducts derived from the software without any
limitations, except that the source code of théevsrie may only be used by licensees and may not
be shipped together with derived products or distad by licensees in any other way, unless a
prior written consent is provided by the authocdrisees may not give to third parties any technical
details or documentation of the software, unlege@ written consent is provided by the author.

Licensees are obliged to retain this license agea¢rand all copyright notices in all copies of the
software. In any derived products, licencees shekthowledge use of the software with a notice
that is easily accessible to the users of theseatkproducts.

The author and the licensees hereby agree thatwileyointly develop the software with the
purpose of its improvement and extension in ordefitttheir needs. Such development will be
performed under guidance and with consent of thlecauAll modifications of the software will be
copyrighted by the author and will be subjectethtoterms of the present license agreement.

5.2.2 Statement of Intention and Obligations

The intention and common interest of the author tedlicensees is to develop and continuously
improve a good base library for development of rtlagiplications, and will jointly pursue after
efficient and high level development work in ortieproduce good and useful software from which
all of them will benefit. In long term, the authmtends to broaden the circle of developers and
users of the software and may eventually releasestiftware under a free open source license in
order to attract a broader community of collabeatilevelopers and users. The intention of the
author and licensees is to maintain longer ternaboration on the development and use of the
software.

Within the period in which licensees and the autkol jointly work on the library, any
contributors will be respoinsible for maintainingegrity and good quality of the library. They will
refrain from any actions that might harm the usghiguality or good reputation of the library.

Within the period in which the software is usedase library for development of derived product
at licensees' institutions, main contributors t libraries derived from the software will be gesaht
similar rights as stated in the current licenseeagrent. This means that the main contributors will
be able to use the developed libraries to whicly tmatribute over this period, under similar terms
as stated in this license agreement, to derive tven products from these libraries. In particulat,
they will be allowed to use, license, sell, andtribsite such derived products without any
limitations, except that the source code of thevedr products may not be distributed. However,
this right will be granted only for libraries ang@ications that do not contain any trade secrets o
vital knowhow that is used for commercial purpog¢asd which the involved institutions - the

31

5. Use of IgLib as Base Library Coordination oft®#are Development

licensees - do not want to reveal publically). Snoh-disclosable contents will be separated from
basic technical libraries and put into specializedts (applications and high-lever libraries).
Contributors who are granted rights from the curgaragraph will be selected by the author of the
software.

In addition to the rights stated in the previousageaph, the author of the software, Igor GreSqvnik
will retain the right to spawn his own continuowedlopment thread for any of the derived libraries
mentioned in the previous paragraph, and to useglole and copyright such a newly created
library without any limitations. In the case thatck a fork event occurs, the author must assign a
new name to his forked version of the library, amaly only include in this version the code of the
original library that was created before the fosemt occurred, unless agreed otherwise by the
copyright holder of the original library.

Licensees will pursue the goal that the products/elé from the software are as open and as widely
disseminated as possible, especially when creatiosuch derived products is partially or fully
supported by public funding.

5.2.3 Disclaimer

IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LI ABLE TO ANY
PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES ARISING OUT OF THE USE OF THIS SOFTWARE, ITS
DOCUMENTATION, OR ANY DERIVATIVES THEREOF, EVEN IF THE AUTHORS
HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE .

THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPL |IED WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOS E, AND NON-
INFRINGEMENT. THIS SOFTWARE AND ITS DOCUMENTATION A RE PROVIDED
ON AN ,AS IS" BASIS, AND THE AUTHORS AND DISTRIBUTO RS HAVE NO
OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES ,
ENHANCEMENTS, OR MODIFICATIONS.

5.3Possible future License Agreement for
IGLIb

This software and its documentation are developetdcapyrighted bygor GreSovnik Ljubljana,
Slovenia, except for individual parts of the softevéor which separate different copyright notices

32

5. Use of IgLib as Base Library Coordination oft®#are Development

are provided. The following terms apply to all §lassociated with the software unless explicitly
disclaimed in individual files.

The authors hereby grant permission to use, copgifyy distribute, and license this software and

its documentation for any purpose, provided thadteg copyright notices are retained in all copies
and that this notice is included verbatim in angtrbutions. No written agreement, license, or
royalty fee is required for any of the authorizesest Modifications to this software may be

copyrighted by their authors and need not follow licensing terms described here, provided that
the new terms are clearly indicated on the firgfepaf each file where they apply.

IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LI ABLE TO ANY
PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES ARISING OUT OF THE USE OF THIS SOFTWARE, IT S
DOCUMENTATION, OR ANY DERIVATIVES THEREOF, EVEN IF THE AUTHORS
HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE .

THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPL |IED WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOS E, AND NON-
INFRINGEMENT. THIS SOFTWARE AND ITS DOCUMENTATION A RE PROVIDED
ON AN ,AS IS" BASIS, AND THE AUTHORS AND DISTRIBUTO RS HAVE NO
OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES ,
ENHANCEMENTS, OR MODIFICATIONS.

5.4 IGLib README

==== Content of the file Readme.html:

IGLib.NET (Investigative Generic Library) is a set of ujilitbraries that are particularly suited for
development of technical applications.

The system has been designed and developédobyGreSovnik who set up its foundations in
2006 and is leading its development. In longer te¢ha library is intended for distribution as free
open source under a BSD-like license. Howeverlitinary will not be open for public immediately
because the author wants to achieve a certain levematurity first and stabilize library
development within a smaller group of dedicatedettepers. Hopefully the library will be released
as free open source library by the end of 2013oiethis happens, groups and individuals can join
development (and usage) of the library by individagreement with the principal author. The
author is open to such arrangements but wouldt@iketain a good control over development until
a certain level of maturity is reached. He belietrest such position will be beneficial for future
users and developers.

Since 2011, the library is used by tteboratory for Multiphase Processefsthe University of
Nova Gorica and by theLaboratory for Advanced Materials Systewfsthe Centre of Excellence
for Biosensors, Instrumentation and Process Cagntndlere it is used as base library for
development of applications in the field of neumatworks and optimization. These grous use the

33

5. Use of IgLib as Base Library Coordination oft®#are Development

code under a customizéidense agreemerand also contribute to library development innaitied
extent.

IGLib contains some basic utilities like those fearsing of strings, a couple of utilities for
building GUI, a numerical library, and other compats. It aims at providing a well designed base
library for developnent of complex numerical andesttechnical applications. Parts of IGLib have
also been used in other areas such as a systamafaaging a histological laboratory or large scale
invoicing support system.

Historically, the initial motivation for developent of the library arose from the needs to have a
good base library for development of complex optation software, but the library was planned in
a much broader sense since the very beginnings adxistence. For more information, check the
library home page at

http://www2.arnes.si/~ljc3m2/igor/iglib/

or check code documentation at
http://dl.dropbox.com/u/12702901/code documentag@merated/iglib/html/index.html

External Libraries

This library depends on a number of external bpen source libraries. Authors of the code are
grateful to all developers that invested their warskdevelop these libraries and who made them
open and accessible to the public.

The following external libraries are used:

- Math.Net an excellent scientific library written entiraly C#. Iridium and Neodym
libraries are used from this project.

« ZedGrapha flexible charting library for .NET.
« NPlot, an easy to use 2D plotting library.

« Activiz, C# wrappers for the VTK 3D graphics library.

Please visit the home pages of these great lilsrgjiest follow the links above) and consider
whether you can support their development in somg w

Authors' index
Below is the list of authors' synonims used indbde:

. lgor - lgor GreSovnikCrnete 147, Ljubljana, Slovenia (gresovnik (at) gmadtjccom)
« Tako78 - Tadej Kodelja, Slovenia (tadej (dot) kgaléht) gmail.com)
« Vertnik - Robert Vertnik, Slovenia (robert (dot)rtrak (at) gmail (dot) com)

« Katarina - Katarina Mramor, Slovenia (kmramor @ail (dot) com)

34

6. General Management of Simulation Framework -g&ations Coordination of Software
Development

6 GENERAL M ANAGEMENT OF SIMULATION FRAMEWORK -
SUGGESTIONS

6.1.1.1 From Mail to Bozidar & Robert, Nov 26 2010

Spodaj sem poskusil zgaho in okvirno predstaviti zamisel o tem, kako urex razvoj,
pravice in dostop do razvitega simulacijskega svéiv O teh stvareh bi morali v doglednéasu
sprejeti neke osnovne odltve, bomo pa verjetno rabili nekagasa, da izmenjamo in uskladimo
poglede.

Softver bo logino sestavljen iz wenivojev: osnovne knjiznice, viSjenivojske knjizaic
simulacijsko ogrodje, splosne simulacijske aplij@oil kustomizirane industrijske aplikacije.

Precejcasa bodo verjetno vse, kar bomo naredili za ingoskustomizirane industrijske
aplikacije. Lahko, da bomo kdaj tudi prodajali sple licence (podobno, kot so npr. licence za
Fluent), vendar si v naslednijih treh letih teZkedstavljam to moznost.

Kar se tte kustomiziranih industrijskih aplikacij, bodo taprte kode. V vsakem primeru
posebej se bomo morli z ngrokom dogvoriti, ali hée imeti ekskluzivo glede uporabe in na
katerih delih softvera. V i primerov naréniku ne bomo prodali softvera (to bi pomenilo, da
izgubimo vse pravice na tem softveru), ampak lieexec uporabo.

Tudi pri kustomiziranih aplikacijah bo lahko samel #&ode tak, ki bo resémo vezan na
speciféno aplikacijo in za katerega lahko némik zahteva ekskluzivne pravic€e v kaksnem
primeru ne bo tako, bo softver seveda bistvenojideaznar@nika, v tem trenutku nimamo niti
kapacitet, da bi lahko kaj takSnega naredili. Denbdahko ostajali na nivoju, je za nas nujno, da
imamo velik del softvera, ki ne pade v kakSne akakhe pogodbe.

Dele kustomiziranih aplikacij, ki jih bomo razviha kaksno konkretno natito, bomo v
vecini primerov tako ali tako morali zapreti. V naSéameresu je vedno, dam manjsi del softvera
pade v to kategorijo, da bomo lahko iste stvarirapi ¢im veckrat. Najbolj idealna situacija pri
industrijskih nareilih je, ¢e moramo zapreti samo mali del softvera, ki sditede zelo speciénih
stvari za dano na&édo (npr. konkretnih strojev ali procesov, ki jimauliramo).

Pri osnovnih knjiznicah in tudi pri osnovnem sinuijskem ogrodju bi na vsak &ia
poskusil ohraniticimvetjo odprtost. To nam bo med drugim omodo tudi uporabo veliko
odprtokodnega softvera, ki je ze narejen in s kateeSimo del svojih problemov. S takSno
odprtostjo lahko veliko pridobimo pri prepoznaviiosaSe skupine, predvsem v akademskem
okolju. Na ta na&n lahko tudi motiviramo druge, da uporabljajo resftver in se morda tudi
priklju¢ijo razvoju. Ze samo uporaba softveraim Sirsem obsegu je koristna, ker bomo tako dobili
povratne informacije o tem, kaj ne dela v reduantd lahko bilo bolje zastavljeno.

35

6. General Management of Simulation Framework -g&ations Coordination of Software
Development

Pri koristnem povezovanju navzven vidim dva moZagna, kako se to lahko zgodi. Prvi
n&in je, da ljudje, ki bodo od nas Sli delat v drugkolje in bodo navajeni na uporabo nasSega
softvera (ga bodo tudi razvijali), prenesejo tatwaf v svoje novo okolje. Potem se lahko
dogovorimo, da prispevajo k haSemu razvoju, aldpaga samo uporabljajo in nam sofinancirajo
razvoj.Ce bo vse OK, bomo mi imeli dovolj man razvojni potencial, da jim bo to bolj v interesu
kot pa z&eti novo vejo razvoja in sami razvijati softver ngp Za primere, ko bi vseeno hotel
za'eti svojo vejo, se moramo dogovoriti, kateri ddtwera lahko za to uporabijo.

Drugi n&in povezovanja je, da nekdo drug pride do nas eresbv, da bi uporabil nas
softver kot osnovo za svoje stvari. Ko bomo enknag¢li dobro osnovo inte bomo odprli del
softvera, se bo verjetno nasel tudi kdo, ki bo tem@siran za kaj takSnega.

V vsakem primeru se mi zdi koristno prizadevatdsi,Se drugi uporabljajo nas softver, ker s
tem pridobivamo ugled in reference ter dokazujeda@oje nas softver kvaliteten (s tem je podobno
kot s citati pri¢lankih). Tako pridobimo tudi koristne povratne infacije in dodatno kontrolo
kakovosti fe je ve& oci, ki gleda softver, se najde in odpravi tudic ygomanijkljivosti), tudi v
primeru, da drugi softver samo uporabljajo.

Pri odprtih kodah se navadno vzpostavi weteresnih skupin ljudi: taksni, ki dejansko
prispevajo tudi pri razvoju, aktivni uporabniki, &idajejo zelo koristne povratne informacije, in
pasivni uporabniki, ki samo uporabijo softver. Ndwa je zelo tazko in v w&i primerov
neefektivno Igiti med temi skupinami in npr. dati dostop do ka@eno prvi skupini, ker potem to
ni odprta koda in izgubi svojo funkcijo pri privgdohju potencialov, pa tudi marketinska funkcija
takSne kode zbledi. V glavnem imamo v praksi dvemogti - ali kodogisto odpremo, ali pa jo
zapremo in se dogovarjamo z zunanjimi skupinanskzgni razvoj na podlagi bilaterarnih pogodb,
kjer so (navadno precej komplicirano) di#ae vzajemne obveznosti in pravice. Govorim seweda
delu kode, ki pa mora biti funkcionalno zakina celota. Po mojem mnenju je aillev za odprto
kodo v naSem primeru zdalenajboljSa, ker bomo vsaj delno Se vedno delovadikademskem
okolju in bomo na ta rn lahko izrabili veliko priloznosti, ki se v tenkolju ponujajo (pridobivali
bomo ugled in Se prisli do zastonj razvojnih kafegi Da del kode odpremo, da mi zdi tudi z
moralnega vidika korektno, saj bomo razvoj v vehikeri pokrivali iz javnih sredstev. Jaz bi tudi
ljudem, ki bodo delali na razvoju kode, dal prayida svoj del kode npr. po kéemem doktoratu
vzamejo in z njim prosto razpolagajo, ker bo tmzdbbra motivacija za to, da vlagajo svoj trud v
razvoj kode. To jim sevedatne bo koristilo,ce bodo lahko vzeli samo tisto, kar bodo sami
napisali, ampak mora biti sem vkigna funkcionalno zakljigna celota, da bodo lahko svoje stvari
dejansko tudi uporabili.

Osebno vidim le dva argumenta proti odprtosti katkeiahko pride do situacije, ko bomo
tezko vzdrzevali nadzor nad razvojem, in da lahkkdo poceni pride do tega, kar smo s trudom
razvili, in ali postane naSa konkurenca ali pa ditega ne bi od nas kupil storitev, ki jih sicer b

Zaradi nadzora bi izvedel odpiranje kode postophieence in te stvari lahko uredimo
takoj, praktéen dostop do odprtega dela kode (upload na streitulk pa lahko uredimo pozneje,
ko bo koda v dovolj zrelem stanju in bomo imeli dipwazvojnih potencialov. Vedno imamo mi
moznost voditi razvoj (tudice izdamo kodo pod odprto licenco), tezave lahkommaamoge bi

36

6. General Management of Simulation Framework -g&ations Coordination of Software
Development

bil prevelik naval ljud, ki bi se hoteli v to vkiiti. Tudi za ugled ni dobraie delamo reklamo za
kodo, ki je Se zelo nedodelana.

Probleme s konkurénostjo bi reSeval na ta &ia, da ne damo vsega, kar sodi v osnovno
simulacijsko kodo, takoj v odprti del, ampak prijbwj vrhunskih stvareh (ki lahko za nas
pomenijo pomembno konkur&mo prednost in ki Se niso lahko dostopne drugjehdcedimo s
casovnim zamikom. Na #Zatku bi takSne module dali v zaprti del kode in ssveda hkrati
pohvalili, da imamo za ta in ta problem @eln algoritem, ki ga lahko stranke dobijo preko
komercialnega natdla (ravno za takSno oglasevanje nam lahko v prlostl odléno sluzi portal,
preko katerega bomo distribuirali odprto kodo).Bamo morali iskati dober kompromis med tem,
da je odprti del kode vseeno dovolj funkcionalemfg@sionalno narejen in stabilen, in med tem, da
imamo v zaprtem delu dovolj adutov, da nam drugkaekonkurirajo. V vsakem primeru bo nas
najvesji adut, ce uspemo narediti dober tim in organizirati delot je treba, ker nas bo v tem
primeru vsak tezko dohajal.

Celotna slika bi bila po mojem predlogu taksna:

Imamo dobro dizajnirano odprtokodno ogrodje z vigdgenim odlEnim notranjim
razvojnim potencialom. Vse doktorate vprezemo ,vd@ to ogrodje izboljSujemo incikovito
akumuliramo orodja potrebna za dobro simulacijskdd (grafika, definicija vhodnih podatkov,
solverji in druge numetne knjiznice, definicija kompleksnih geometrij, dolsemeshing, adaptivni
inkrementalni algoritmi, razini numeréni triki itd.). Bolj ko bo to okolje dodelano, la&jbomo
pritegnili dodatne razvojne potenciale (doktoramdujine in postdoktorandi, ki si bodo zeleli dela
v nasi skupini, ter zunanje raziskovalne skupinegkbodo Zelele vKliti v razvoj) in veji bo nas
ugled, ki bo koristen pri pridobivanju poslov.

Poleg odprtega okolja imamo plast modulov in algoov, ki po vsebini sicer spadajo v
osnovni nivo, vendar so zelo zmogljivi glede natt®o stanje razvoja tako da niso zlahka dostopni
na trgu. Ta del je zaprt, v &@i primerov za dovolj dolgo omejeno obdobje (dokie ne postane
nekaj obtajnega in splosno dostopnega). Te algoritme ¥ijpmo v nekatere aplikacije po
narcilu in jih po moznosti delimo s partnerskimi skugmi, ki v zameno ponudijo kaj drugega.

Nad tem imamo plast orodij, ki so bolj vezana r@ustrijske primere in jih neemo meSati
v odprto okolje, ker so prevespeciftna. Te stvari so v glavnem zaprte za zunanjo uponaiasih
jih lahko damo v kaksno odprto knjiznico zaradilaknih namenov, v vsakem primeru pa ta del
kode poskuSamo obdrzati izven modulov, ki padejo kakSne ekskluzivne licence, da jih lahko
brez tezav uporabimo zadearanikov.

Zadnjo plast predstavljajo kustomizirane aplikaqie nard@ilu komercialnih strank ali
takSne, ki nastanejo v okviru skupnih projektowndustrijo. Ta nivo mora biti v vsakem primeru
zaprt za zunanji dostop, saj bo pogosto vsebovakrracije, ki lahko predstavljajo poslovne
skrivnosti industrijskih partnerjev. V nekaterihirperih tudi znotraj skupine ne bodo imeli vsi
dostopa do taksnih delov kode.

37

6. General Management of Simulation Framework -g&ations Coordination of Software
Development

References:

[1] Doug Lea:Draft Java Coding Standardlectronic document, available at
http://g.oswego.edu/dl/html/javaCodingStd.html

[2] C# Coding Standards & Best Practic&ectronic document, available at
http://www.dotnetspider.com/tutorials/CodingStamtsatioc

[3] Igor GreSovnikProgrammers’ guidelines for Development of Softwaittin COBIK
& Laboratory for Multiphase Processebreatise, COBIK, 2012.

[4] Igor GreSovnikloptLib, electronic document at
http://www?2.arnes.si/~ljc3m2/igor/ioptlib/

[5] Igor GreSovniklGLib.NET, electronic document at
http://www2.arnes.si/~ljc3m2/igor/iglib/index.html

[6] Igor GreSovnikiGLib Documentationelectronic document at
http://dl.dropbox.com/u/12702901/code documentégiemerated/iglib/index.html

[7] Igor GreSovnikiGLib.NET Code Documentatiprelectronic document at
http://dl.dropbox.com/u/12702901/code documentéiemerated/iglib/html/index.html

[8] Igor GreSovnik:Optimization program Inverselectronic document at
http://www?2.arnes.si/~ljc3m2/inverse/index.html

38

Sandbox (this is not a part of this document)

39

