

I. Grešovnik: Coordination of Software Development

Coordination of Software Development in
COBIK and Laboratory for Multiphase

Processes

Revision 2, June 2011.
(Revision 0: November 2010)

Igor Grešovnik

I. Grešovnik: Coordination of Software Development

i

Contents:

1 Introduction & Background ...1

2 Current state, Activities & Plans ..2

2.1 Current Activities... 2
2.1.1 Test case for NAFEMS heat conduction test in C# .. 2
2.1.2 Choice of basic platforms for software development.. 2
2.1.3 Short course on C#.. 2

2.2 Plan.. 3
2.2.1 Main Tasks and Assignments ... 3

2.3 Motivation and Justification ... 9
2.3.1 Statement of Objectives .. 9

2.4 Overview of Numerical libraries... 10
2.4.1 Numerical Libraries Available for C#... 11
2.4.2 Numerical Libraries Used within the Group... 12
2.4.3 Graphical Libraries Available for C#.. 13
2.4.4 Graphical Libraries Used within the Group .. 14

2.5 Internal Codes .. 14
2.5.1 Code for Continuous Casting Simulation in Štore Steelwork (Robert Vertnik) 14

3 Establishment of Systematic Software Development ...14

3.1 Plans .. 15

3.2 Choice of Development Platform.. 15

4 Optimization Tools ..19

4.1 Basic Optimization Scheme... 19
4.1.1 Notes on Nomenclature... 21

4.2 Data Exchange Between Optimization and Direct Analysis .. 24

4.3 Optimization Shell – Things to be Done First.. 26

5 Use of IgLib as Base Library ..27

5.1 About IGLib.NET .. 27

5.2 IGLib License Agreement ... 30
5.2.1 Grant of Rights..31
5.2.2 Statement of Intention and Obligations... 31
5.2.3 Disclaimer... 32

5.3 Possible future License Agreement for IGLib... 32

5.4 IGLib README .. 33

6 General Management of Simulation Framework - Suggestions...35

 1. Introduction & Background Coordination of Software Development

1

1 INTRODUCTION & BACKGROUND

This is the cover document for coordination of activities related to software development in

Prof. Božidar Šarler’s groups at COBIK & University of Nova Gorica.

In COBIK (Centre of Excellence for Biosensors, Instrumentation and Process Control) we

hve a roughly 3 years long project with the aim of developing software for numerical simulation
and optimization of arc-discharge reactor for production of fullerenes and carbon nanotubes. A
Ph.D. student will develop a numerical model based on collected literature, while I will be in charge
of developing software for optimization and inverse identification of model parameters (adopting
and refining some ideas developed in IOptLib [4]).

In the Laboratory for Multiphase Processes, extensive knowledge has been accumulated in

the field of numerical simulation with meshless techniques, with years of experience in modeling of
physical phenomena related to solidification of metals and collaboration with steel and aluminum
production industry. However, software was developed on ad hoc basis, development was mainly
done by Ph.D. students each of which developed and used his/her own code. Such approach turned
effective in the past, but poses a number of limitations for further development. As problems to be
solved in the future are becoming more complex , interdisciplinary and interwound, the need for
more systematic and correctly managed software development bocomes evident.

It was decided that I will initiate and lead development of a common simulation framework

that will be used in the Laboratory for Multiphase Processes, and also shared by COBIK for
development of numerical models of fullerene production. The development of this framework will
significantly improve efficiency of software development in the group, it will provide a platform for
permanent inclusion of research achievements, and will simplify introduction of new employees
into working proces. The framework will be designed profeccionally, it will be scalable, extensible
and modular. Initial momentum will be provided by new Ph.D. students while current work (of
Gregor Kosec, Robert Vertnik, Umut Hanoglu) will be slowly added later to enable transition from
existing codes to a common simulation code. The framework will be intended for both academic
work (including Ph.D. theses) and for development of industrial applications, which is a particular
challange in code design. Joint use by UNG and COBIK will be beneficial for both institutions and
will cause additional synergetic effects.

The present document was created to detail the ideas of how software development will be

organized, to argue and clear important details such as choice of platforms, etc.

 2. Current state, Activities & Plans Coordination of Software Development

2

2 CURRENT STATE, ACTIVITIES & PLANS

2.1 Current Activities

2.1.1 Test case for NAFEMS heat conduction test in C#

Task leader: Robert

• Check for numerical and graphical libraries that were used in FORTRAN codes (or
possible substitutes) – Robert

• Development of a small simulation code – Robert
o Help with input files reading and input forms – Igor

• Setting up the test and checking results – Robert
• Overseeing the development – Igor

2.1.2 Choice of basic platforms for software development

Task leader: Igor
• Starting activities – Igor, Robert
• Search for libraries availability on different platforms – Robert, Igor
• Setting up basic requirements - Igor
• Evaluation of platforms with respect to requirements – Igor, Robert, …
• Inclusion of group members for remarks, comments, suggestions – Igor

o Collection of information about what individual group members are working
on, which are their requirements in terms of software, what are main
interactions with others. Information is gathered in individual meetings. -
Igor

2.1.3 Short course on C#

Reading:

 2. Current state, Activities & Plans Coordination of Software Development

3

• Harness the Features of C# to Power Your Scientific Computing Projects

Task leader: Igor

• Information about intended course, scheduling
• Preparation of material
• Performing the course

o Delivering individual topics
o Suggesting exercises & additional reading
o Identification of possible issues, help to overcome them

2.2 Plan

2.2.1 Main Tasks and Assignments

2.2.1.1 Construction of general framework – Robert, Igor, Gregor Kosec

A complete simple example (NAFEMS heat con1duction test) is first coded in C# - Robert
On this example, basic structure will be created – Robert, Igor, Gregor

Basic design requirements:

• Easy switching between 2D and 3D
• Easy coupling with other numerical codes, e.g. thermal code with external

mechanical code to obtain plastic heat generation
• Enable micro-macro modeling
• Enable re-meshing
• Enable multiple joint domains with different material properties and possibly with

different physical laws, but with shared boundaries and therefore shared simulation
point co-ordinates

• Extensible material properties
o Enable definition of material properties through external calculations,

consider various arrangement, e.g. accumulation through time stepping
procedure, cases where storage of history variables is required

• Enable non-local time and domain effects (limited or unlimited domain), e.g.
relaxation

• Flexible definition of material properties and clear & efficient rules to access them

 2. Current state, Activities & Plans Coordination of Software Development

4

2.2.1.2 Linear Solvers

Somebody keeps tracks of linear solvers suitable for inclusion in the framework and
accessible under suitable conditions. Also implements inclusion of the solvers, including design of
how libraries are included, implementation of wrappers, and inclusion in the standard class library
of the framework.

Main requirement for solvers one should consider:

• Efficiency
o Efficiency of system of equations assembly
o Efficiency of the solver itself

• Integration suitability
o Prices
o Compatibility of licenses
o Platforms for which the specific solver is natively available

For large scale industrial problems, solvers have almost always the predominant impact on

the overall CPU efficiency of the simulation code. Usually, not using a solver with sparse storage
also has adverse impact on memory usage. Somebody should therefore maintain a good overview of
what is the current state of solvers market, and should be skilled in integrating a variety of solvers
into the simulation framework.

Licenses should be carefully examined before integrating a particular solver into the

framework. Some licenses (in particular some open source licenses) will not be compatible with our
framework because of the restrictions they impose. A typical example is the GPL license, which de
facto requires that if some software is linked with the respective libraries (the term used by the free
software community is “derived from”), its free open source must be provided under the GPL
compatible license, which in effect bans many possible business models for generating revenue by
your software. In the case of proprietary licenses, the license cost may be a limiting factor what
regards usability of the solver. Some licenses require payment only for development versions, while
compiled code linked with your application can be freely distributed to the users of your software.

Solvers are typical example of functionality for which we will probably have to consider

linking of code written for different platforms. This is because many solvers are available only in
lower level native programming languages (such as C, FORTRAN or even partially in assembler)
due to their performance critical character.

Within the software framework, there should be a unique API (application programming

interface) for interacting with the solver. All built in solvers should therefore be wrapped into such
an interface, such that usage of the solver is uniform to developers.

Many top-end solvers are commercial. While freeware equivalents exist, they may be much

less efficient. By defining a common API for all solvers, it will be easy to switch between different
solvers (it must also be possible to do this dynamically at the application level). In this way, we can
use expensive commercial solvers on high performance systems used to run industrial simulations

 2. Current state, Activities & Plans Coordination of Software Development

5

or in commercial installations of simulation software at customers. For development on local
machines, freeware substitutes can be used.

2.2.1.2.1 Graphics
Suitable graphic tools should be gathered or implemented that can be used to represent all

possible kinds of results that can be generated by the code.
Graphics is used for viewing and quick verification of results, for inclusion in reports and

articles, and for presentations. It is important for developers to have easily accessed tools for
presentation of results, which enable first verification of their code, and it is also important to be
able to produce quality, readable and good looking representation of results for inclusion in papers
and presentations. Graphical representation of results will usually create the first impression of our
work to potential partners and customers.

There are two main approaches to graphical representation of data. One can either use an

external graphical engine (such as GnuPlot, Mathematica or Matlab) and export graphics in format
that is understood by such software, or can show and export graphics by using library routines
linked to the code that produces and manipulates the data.

The first approach may seem easier and quicker from developer’s perspective because the

external engine provides many high level functionality such as decorating graphics with titles,
labels, gridlines, coordinate marks, etc, or user interaction capability for zooming in and out,
rotating,, exporting in different formats, etc.

On the other hand, use of external engines is less flexible because high level functionality is

not so easily extensible, it requires cumbersome preparation of output (which may include
generation of scripts), and it usually takes some user interaction in order to properly transfer the
presented data to the graphical software. From this point of view, developing and using a graphics
layer based on good general purpose graphical libraries may be a better choice, and should be a long
term solution for graphical processing. A good graphical library that can be well integrated with
GUI module can enable, after a small initial investment, much faster generation of results as the
approach with external engine.

Building general graphic utilities for the simulation framework is extremely important on

long run, but is quite low on priority list as compared with other functionality. On the other hand,
developers will miss such functionality a lot until it is provided. The main problem with graphics is
that it spans several levels in software hierarchy, and valid implementation requires a lot of
programming knowledge and experience, which we will lack badly before the development team is
well-trained. The solution envisaged is that people can develop different temporary ways of
graphical presentation of results, but try to implement these in such a way that others in the team
can use them and also contribute to them. What we can do in the very beginning is to make research
of possible candidates for graphical libraries and implement some basic stuff based on these
libraries.

Requirements that should be considered well when making decision about the base graphical

libraries of the framework are the following:

 2. Current state, Activities & Plans Coordination of Software Development

6

• Ability of generation of different output formats.
o At least one general vector format should be included.

• Good use of graphic hardware (for efficiency reasons).
• Good graphic capabilities (quality output without defects, smoothing, interpolation,

definition of lights, transparency, shading, etc.).
• Availability of general high level functionality such as presentation of data based

either on meshes or clouds of points, calculation of surfaces from volumetric data,
generation of contour plots, cross sections, proper rendering of intersections, etc.

• Good presentation of different mathematical objects such as meshes, vectors,
contours, streamlines, etc.

• Possibility of generating animations programmatically (either built-in or achievable
through generation of frames that can be used by external libraries to show and
export movies).

• Implementation of various decoration utilities such as titles, labels, grids, boxes,
value marks, etc.

• Good integration with GUI development (e.g. graphical windows enable capturing
events, transforming views and light positions is straight forward), possibility of
integration with graphical GUI builders, etc.

• Availability for different platforms (we should e.g. libraries that are available for
.NET but not for MONO, and vice versa)

• License limitations
o Should not ban any of intended uses of the platform, including commercial or

open source sistributions
o Cost; it is very desirable that the library is freely available. Somewhat

acceptable alternatives are development licenses where you pay per
developer but can distribute the products without additional costs.

Payable libraries may provide more functionality, but would make the framework much less
attractive for open source distributions. Possible solutions may include using two
presentation layers where one is free and less capable, and the other is payable.

2.2.1.2.1.1 2D Graphics

2D graphics for simulations can be based on the same lirary as 3D graphics, or it can be
based on a separate library. The advantage of using the same library is more unified development
and less effort necessary for introducing new developers. On the other hand, a specialized 2D
graphic library may be easier and more efficient to use. We can therefore begin with developing 2D
graphics on a separate library and later re-implement functionality and integrate it into the common
2D/3D system.

Beside 2D graphics for presentation of simulation results, we will also need charting
abilities for plotting various dependencies. This may be implemented as a separate module based on
a separate specialized library because such libraries can have very specialized and elaborated
features for this purpose (an example of this is the Zedgraph library).

2.2.1.2.1.2 3D Graphics

 2. Current state, Activities & Plans Coordination of Software Development

7

We currently don’t have a 3D simulator, but 3D graphics can be generated from 2D slice
models and most likely we will need to develop fully 3D simulation tools in the future, too.

Since developing 3D graphics can be a relatively demanding task, we can do this in smaller
steps each time we need something, and develop a more general module later after gaining
extensive experience.

For a final solution there are different options. We could utilize some external engine such
as GID that is used for mesh generation and presentation of results in finite element. This could be a
quick and easy solution bringing some other benefits (such as meshing). However, I would argue
for use of a graphic library because it can be better integrated in out system and this approach would
allow more freedom and flexibility.

There are some easy-to-use free libraries available, such as DISLIN. The alternative are
more basic libraries, which are more difficult to use, but on the other hand provide much more
power. A very attractive candidate in this category would be the VTK library (Visual Toolkit),
which has a lot of powerful features, can produce very attractive and clear output when used
properly, and incorporates built-in user interaction utilities. It would definitely be a good long-term
choice because it would probably meet any requirement that we could have in the future, which can
outweigh the smoehow larger effort needed to use it. The library is wide spread in very demanding
medical applications.

2.2.1.2.1.3 Integration of Graphics

One part of graphic modules development is development of well structured 2D and 3D
libraries, which developers can use very efficiently to present anything they want.

The other part is integration of graphic capabilities created in this way into the simulation

framework. This includes definition of user interfaces such that the user can interact with simulation
software and its pre- and post-processing capabilities without having contact with the code.

Typically, user interfaces will be in form of GUI, but there can also be a more flexible user
interface, e.g an user interface built around an interpreter.

Graphics will typically be integrated with simulation code in the top-most software layer.

Integration in lower layers is also possible, e.g. in the case where real-time graphics is required.
However, this must be implemented in such a way that concrete implementation of graphics is
completely separated form the code (by using abstraction properly) and can be hooked on the code
on demand. This hooking should be preferable implemented in such a way that any other processing
could be hooked on instead of graphics (or in addition to graphics), e.g. procedures for exchange of
data with coupled simulation codes.

2.2.1.3 Geometry Definition, Presentation and Mesh generation

Goal is to establish a system for definition of complex geometries, use of geometric
definitions within simulations (e.g. for contact detection and calculation of contact terms).

Wish list:

1. Geometric definition used in the framework should be compatible with standard
CAD formats.

 2. Current state, Activities & Plans Coordination of Software Development

8

2. Meshing tools should work with abstract geometrical definitions, either directly or
indirectly (with intermediate transcription of geometry into mesher-native formats.).

3. Reverse should also be possible – to generate abstract geometrical models from
meshes (either non-deformed or deformed).

4. It should be possible to manipulate geometrical definitions from the code.
5. Presentation module should be able to show results or meshes superimposed to

geometrical definitions (preferably with ability to assign define transparency and
other optical properties to graphical representation of geometry).

Definition of geometry of simulated objects is linked with representation of continuum

geometry used within the numerical models, therefore good integration of both is of primary
interest. At least in the beginning it is not feasible to develop a full scale CAD representation of
geometry, therefore the emphasis will be on seamless integration of existent tools (such as CAD
systems and meshing tools). Choice of the right software to rely on is very important for this task,
and tools for importing, exporting, and interaction of native geometrical representation of such
systems will be considered. This also means that internal geometry representation will be built, with
efficiency and compatibility issues always kept in mind and with knowledge of that continuously
updated.

2.2.1.4 Definition of test cases

Since the beginning we should maintain a set of test cases. When the system evolves, test
cases (i.e. input formats, formats of results etc.) will be changed as we go.

Test cases are maintained in order to enable the following:

• Enable testing of correctness of code
• Testing of efficiency (e.g. when studying a new solver)
• Testing that nothing is corrupted when new functionality is added or existing

implementations are modified
• Following of stability of the code with respect to input/output formats, etc. (we will

strive for invariability backward compatibility of input formats, a much as this is
feasible without affecting efficiency and good design of the code).

• Quick demonstration of software capabilities for potential customers and partners
• Quick and plastic introduction of newcomers into the code (code structure as well as

pure usage).

There will be a growing set of test cases. Maintenance of some can be dropped in order to

reduce maintenance costs, especially when their coverage is replaced by more elaborated tests.

We will maintain some test cases particularly for education purposes. This will enable

somebody to learn about just specific portions of the complex system almost as effectively as if
he/she studied a simple code including just the minimal subset of functionality.

2.2.1.5 Industrial Applications

 2. Current state, Activities & Plans Coordination of Software Development

9

2.3 Motivation and Justification

2.3.1 Statement of Objectives

Primary goal is to establish systematic and quality development of simulation and
optimization software based on modern software architecture and managed according to generally
recognized good practices of software development. This will include:

• Design and systematic development of code base
o Basic libraries

� Modular development
� Logical hierarchy
� Identification and inclusion of standard set of external libraries

(paying attention to possible license conflicts, quality and usability of
libraries, complementary libraries to avoid overlapping, etc.)

o Common simulation framework
o Common optimization framework
o Applications

• Establishment of procedures and tools that will enable team work and quality
assurance

o Definition of coding standards (examples are [1] and [2], but ours will be
quite different)

o Systematic software design in order to achieve:
� Modularity
� Extensibility
� Readibility fo code
� Efficiency of work
� Minimal doubling of work

o Setting up revision control system (probably Subversion)
o Definition of testing procedures
o Itroduction of Peer review
o Division of assignment within the group (e.g. testing, taking care of software

and hardvare)
o Arranging optimal knowledge covering and division of specialties (with

partial overlapping to ensure availability of sufficient development potential
for any upcoming task)

• Development of key products that can be marketed:
o General purpose libraries

� Especially free & open source
o General purpose simulation framework and general purpose optimization

framework (can be stand-alone, but are also pre-integrated)

 2. Current state, Activities & Plans Coordination of Software Development

10

� Academic and demo versions for popularization of our work
� Commercial releases when mature enough
� Architecture: common framework with modules for particular

disciplines (e.g. thermal, linear mechanical, plastic, etc.) and
techniques (e.g. domain decomposition, micro-macro, discrete
elements, etc.)

• Development of tailored applications by demand (this is what is done now for the
most of the time):

o Based on common framework in order to enable rapid development
o Coding standard released in order to meet deadlines
o Introduction of standard project management techniques with time
o Gradual division of work to development and short-term project work

2.3.1.1 Considerations

Establishment of systematic development of code according to high level quality standards
will take quite a lot of effort at the beginning. This must be considered a long term investment that
will pay off in the future, especially by:

• Increasing efficiency of development (especially by prevention of doubling of work,
continuous accumulation of useful code, good documentation, etc.)

• Increasing quality of code
o Established quality assurance procedures will probably be more and more

often required by customers, therefore this is necessary to keep us in the
business

• Popularizing the group by releasing recognizable products
• Ability of rapid delivery of customized services and products on demand, which is

very important for industry (which usually has tight deadlines)

The most difficult will be transition period where a lot of decisions will have to be made that

are not so obvious. Introduction of more systematic software development should not disturb the
ongoing work too much, but it should still be quick enough if we want to achieve the desired
effects.

Applications that are already working in production environment or are close to completion
will be left as they are, at least for quite some time. Support for these applications will be provided
in the same way as before. Only when enough “meet” is accumulated, some old applications may be
replaced, especially those that have good prospects for the future.

2.4 Overview of Numerical libraries

We need the following:
• Matrix operations (practically everything is needed for optimization)
• Sparse matrix operations (decomposition, eigenvalues, iterative solvers)
• Special functions
• Fourier transformations

 2. Current state, Activities & Plans Coordination of Software Development

11

• Numerical integration, interpolation, splines,
• Ordinary differential equations,
• Smooth optimization

2.4.1 Numerical Libraries Available for C#

2.4.1.1 Math.Net , Math.NET Numerics

Already used by IGLib. LGPL license for the numerical part.
Read here about sparse matrix support.
Features of Iridium (numerical part):

• Extensive full matrix support, including LU & decomposition, eigenvalues, SVD
decomposition, basic operations such as matrix summation & multiplication, norms,
etc.

• Complex type with many operations
• Non-uniform probability distributions, multivariate distributions, sample generation
• Polynomial interpolation, splines
• Numerical integration
• Fourier transformations
• Special functions, constants
• Combinatorics, polynomials
• Fully managed, object oriented style, extended by IGLib

Math.Net numerics: Math.Net Iridium and dnAnalytics have merged into this library.

2.4.1.2 dnAnalytics – merged with Math.NET Numerics

2.4.1.3 DotNumerics

C# implementations of Kapack, Blas and Eispack. Also includes some methods for

differential equations and unconstrained optimization.

2.4.1.4 ILNumerics

The library does not currently support sparse matrices, but this is promised for the future

(see FAQ).

 2. Current state, Activities & Plans Coordination of Software Development

12

Features:
• Linear algebra: LU, QR, SVD, and Cholesky decompositions, eigenvalues,

eigenvectors
• BLAS, LAPACK
• Object oriented design

2.4.1.5 Alglib

Multi-language library, includes various numerical routines, from sparse sources.

2.4.1.6 IMSL

Commercial numerical library, it is available for C#.

2.4.1.7 Extreme Optimization

Commercial, for .NET, also includes sparse matrices.

2.4.1.8 NMath

Commercial .NET library, also includes sprase matrices.

2.4.1.9 Mapack.NET

Here is the original web site. It seems this library is not developed any more because in
versions found on the internet it is stated that the library is for .NET 1.0. It implements basic full
matrix operations in pure C#, the library is simple to use.

Statement:
Mapack is a .NET class library for basic linear algebra computations that supports a large

number of matrix operations and properties.
It supports the following matrix operations and properties: Multiplication, Addition,

Subtraction, Determinant, Norm1, Norm2, Frobenius Norm, Infinity Norm, Rank, Condition, Trace,
Cholesky, LU and QR decomposition Single Value Decomposition, Least Squares solver, Equation
System solver and Eigenproblem solver.

The algorithms were adapted from Lapack and the Java Matrix Package.
The Mapack.zip download package contains both the Library and the C# source code.

2.4.2 Numerical Libraries Used within the Group

LAPACK (Linear Algebra Package).

 2. Current state, Activities & Plans Coordination of Software Development

13

2.4.3 Graphical Libraries Available for C#

2.4.3.1 ActiViz

Pricing.
A good long term choice for graphical library would probably be VTK. Currently there is

only a commercial C# implementation called ActiViz available. Single developer license costs 2900
$. The library is also available free of charge for personal use, but in this case it can not be
redistributed and it prints a watermark on each graph. Possible solution is that we by one full license
for compiling of commercial applications, while personal licenses are used on individual machines.

2.4.3.2 Microsoft WPF (Windows Presentation Foundation)

Included in .NET, but WPF livraries are not included in Mono framework (it is a question
whether they will ever be)!

2.4.3.3 EyeShot (Commercial with trial version)

Recommended by Tomaž Tekavec. Sais it’s a good library.

2.4.3.4 Microsoft XNA

This is a Microsoft platform for game development in .NET. It probably doesn’t have the
right license in order to use it in our code development, and it can also not be used on multiple
platforms. However, game engines can be one option for base libraries for computer graphics in
simulation framework, therefore it could be beneficial to look at it a bit.

You can start with examples, and you can obtain some nice examples from Visual Studio’s
Extension Manager (under Online Gallery/Templates/XNA Game Studio). You can open the
Extension manager through the main menu/Tools/Extension Manager.

2.4.3.5 DISLIN

Library used by Robert. It seems that DISLIN is available for C#. Library is free for non-
commercial use, for commercial use it has affordable prices.

2.4.3.6 ILNumerics

Also includes graphical library, but the problem is that it is available only under GPL
license, which limit possibility of use in commercial applications. It is also the question whether the
library is strong enough for our needs.

 3. Establishment of Systematic Software Development Coordination of Software Development

14

2.4.3.7 SharpGl

C# wrappers for open GL, probably not strong enough for us.

2.4.3.8 VisIt

VisIt is interactive software for scientific visualization. Maybe numerical software could be
integrated with it as a plugin.

Free open source (BSD license)

2.4.3.9 ParaView

Open-source, multi-platform data analysis and visualization application, BSD license, works
as client-server.

2.4.4 Graphical Libraries Used within the Group

2.5 Internal Codes

This section contains data about computer codes that have been developed or are being

developed within the group.

2.5.1 Code for Continuous Casting Simulation in Štore Steelwork (Robert
Vertnik)

3 ESTABLISHMENT OF SYSTEMATIC SOFTWARE DEVELOPMENT

 3. Establishment of Systematic Software Development Coordination of Software Development

15

3.1 Plans

• Connect current codes with interfaces

o Integration mainly by data exchange through files
• Uniform development of code
• Establishment of revision control system - Subversion server
• Establishment of issue tracking & ticketing system
• VPN for access from anywhere

3.2 Choice of Development Platform

We will strive to concentrate all software development on one or two development

platforms. According to the nature of our work, the main criteria for choice of these platforms are:
• Efficiency, especially in terms of CPU usage
• Availability and price
• Well elaborated language concepts suitable for development of complex applications
• Availability of numerical libraries
• Availability of suitable representation layer

o Graphical libraries with good 3D support, suitable for representation of
scientific results

o Possibility of good integration with GUI
• Availability of basic utilities

o Input/output
o GUI building
o Database connectivity
o Web communication

• Availability of other libraries
• Possibility of deployment of stand-alone applications (independent of expensive

packages)
• Portability
• Support (documentation, examples, etc.)
• Prospects for the future
• Popularity

Figure 1 shows main groups of programming languages.

Due to extensive base of readily available mathematical, numerical and graphical tools,

Mathematica or Matlab could be used as basic platforms. However, there are some disadvantages

 3. Establishment of Systematic Software Development Coordination of Software Development

16

related to these systems, in particular dependence on relatively expensive commercial package, not
very comfortable programming environment (language syntax is not designed for rapid
development, debugging is quite difficult), slowness in comparison to other languages, bad support
for GUI building and system tasks such as input/output or web communication, difficult integration
with other environments, etc. For these reasons, it would be better to use such systems for
specialized tasks when sensible, and build interfaces with other software in such cases.

The most perspective candidates for the development platform seem to be C++, Java and

C#.

Advantages of C++ are speed, rather good object oriented language design, and wide

availability of numerical and graphical libraries. Because of wide availability of compilers for all
platforms, portability of products is relatively good. Still there are some subtle differences between
different C++ compilers and even between implementations of the same compiler on different
platforms, which can be rather annoying when porting applications. Portability is particularly
problematic in the area of GUI and other system dependent things such as database connectivity,
web communication, etc.

Alternatives are managed Java and .NET (with C#) execution environments. As compared to

C++, the main difference is that Java and C# do not have pointers. Because of this, coding is much
easier, especially for unskilled programmers, and the whole range of possible programming errors
(many of them very persistent and difficult to discover) vanishes on this account. On the other hand,
the programmer does not have complete control over dynamic memory deallocation (since this is
automatically performed by runtime environment’s garbage collector), which can be accompanied
by performance penalty in some cases, especially where clever memory handling can exploit system
architecture in order to achieve peak efficiency. Yet on the other hand, such intended optimizations
require very high programming skills and are often not exploited anyway.

One great advantage of Java and C# frameworks is that they rigorously standardize a very

large code base across all platforms on which they are available (including GUI, input/output, web
communication, database access, etc.). In particular, Java comes with a large standard set of free
developing tools and wide standard codebase incorporated in the framework. Hwever, the .NET
framework with C# is more elaborated and enables more efficient development. The Java
programming languages has some deficiencies that are inherited from the past (since Java was the
first widely used platform of this kind, while .NET development has started later and incorporated
many lessons learned from Java). For example, Java does not know calling by reference, generic
types in Java are much more limited and do not ensure type safety to the extent as C# generics do,
GUI building tools are much more elaborated in C# as in Java and the same is true for many other
specialized areas (e.g. thread synchronization support, which is very important for numerical
applications). Building large applications is much simpler in C# than in Java. It also seems that C#
has currently much better development potential than Java, and it should be the preferred choice.

What concerns the development environment and portability, Java has some advantages

over C#, but these do not prevail. The situation with C# is as follows. On Windows OS, the best
development environment for C# is Microsoft Visual Studio. Its Express edition is available free of
charge and it has all functionality most of developers will ever need. It lacks support for some

 3. Establishment of Systematic Software Development Coordination of Software Development

17

specialized tasks, e.g. for building web services. The solution is then that developers who would
deal with these things are provided with payable professional versions of Visual studio while others
use free versions.

Cross platform open source implementation of .NET and C# development environment
exists and is called Mono. Mono does not include everything that Microsoft .NET implementation
(available only on Windows and Mac) does but most of the libraries we would need are available
(including Windows Forms for GUI). Apart from what is missing in Mono, both implementations
are compatible, there this should not be too much of a problem when we would need to port C#
applications to other platforms.

The .NET framework provides an extensive systematically arranged code base and C# is a

highly elaborated, simple to use and well designed object oriented language with many advanced
features (such as generics, strong type checking, array bounds checking, detection of access to
uninitialized variables, garbage collection, suitability for deployment in distributed environments,
extensive internationalization support, well designed exception handling, reflection). Because of
this, C# is proposed as development platform for control applications including optimization shell.

For simulation core development platform, the choice will be made between C# and C++.

The advantage of using C# would be that majority of the development is performed on a single
platform. But for C# to be acceptable, two basic arguments should be verified, namely the speed of
C# code in comparison with C++ and the availability of important libraries such as numerical
(especially those for sparse matrices) and graphical (suitable for use with scientific and technical
computing).

Currently it seems that numerical libraries will not be problematic.

For graphical libraries the situation is not well explored yet. It seems that DISLIN that was

used by Robert is available for C#. A good long term choice for graphical library would probably be
VTK. Currently there is only a commercial C# implementation called ActiViz (actually these are
wrappers around the C++ library) available. Single developer license costs 2900 $. The library is
also available free of charge for personal use, but in this case it can not be redistributed and it prints
a watermark on each graph. Possible solution is that we by one full license for compiling of
commercial applications, while personal licenses are used on individual machines.

Another concern in the case that C# is chosen may be how to port the existent software that

was created in C++ . The long term procedure would be to manually translate all the code form C++
to C# (we could also check whether automatic translators are available). This is not too difficult
since C# syntax is similar to that of C++. The main problems would arise from pointers,
incompatible libraries, lack of multiple inheritance in C#, etc. Another possibility would be to use
managed C++ available on the .NET platform. In this case only parts of code where pointers are
used should be corrected. However, this solution is available only on Windows with .NET, because
Mono does not support managed C++.

See also:

• Harness the Features of C# to Power Your Scientific Computing Projects

 3. Establishment of Systematic Software Development Coordination of Software Development

18

 Programming Languages & Frameworks

 Native languages

 Managed languages

Non-object oriented:
• C
• Pascal
• Fortran

• Java
• .NET languages

o C#
o C++/CLI (managed C++)
o Visual Basic

Object oriented:
• C++

 Interpreted (scripting) languages

• Tcl/Tk (general purpose)
• Python (general purpose)
• JavaScript (web browsesr scripting)
• VBScript (common in MS applications)
• PHP (web server scripting)
• Mathematica (symbolic algebraic system)
• Matlab (numerical & symbolic system)

Figure 1: Main groups of programming languages with some common representatives.

Figure 2: All .NET languages are translated to the common intermediate language.

 4. Optimization Tools Coordination of Software Development

19

4 OPTIMIZATION TOOLS

4.1 Basic Optimization Scheme

 Solution environment
 (task execution)

Control & optimization software
(sensitivity or optimization)

Algorithm parameters:

Initialization parameters (initial
guess & step size)

Tolerances
Control parameters

Design
parameters x

Response
functions

f, ci

Results:

Optimum, response sensitivities, local response models…

Model 2

Model 1

FE Analysis
f, ci

C
ho

ic
e

of
 th

e

m
od

el

Numerical analysis software

Figure 3: Solution environment scheme.

minimise () nf RI, ∈xx (1) a)

subject to () 0,ic i I≤ ∈x b)

and () 0,jc j E= ∈x , c)

where , 1, 2, ...,k k kl x u k n≤ ≤ = . d)

 4. Optimization Tools Coordination of Software Development

20

Figure 4: Example: statement of an optimization problem.

Initialisation (reading of starting guess
and solution parameters)

• Read analysis results and evaluate

the objective function
• Check for convergence and set a

new guess if necessary

• Set parameters to current guess
• Prepare analysis input according to

parameter values
• Run direct analysis

Write results and stop

Optimisation loop

 Numerical analysis

Read input data

Solve the problem

Output the results

Figure 5: Solution scheme for optimization problems.

Figure 6: Numerical analysis: flow in the case of parameter identification.

1. Take current optimization parameters
2. Prepare numerical model according to parameters
3. Run numerical simulation of the process
4. Extract the relevant quantities from simulation results
5. From measured data

• Read result file
• Extract relevant data

6. Calculate the response functions and eventually their gradients
(in our case the discrepancy function f)

7. Store the response functions in output arguments and return

 4. Optimization Tools Coordination of Software Development

21

4.1.1 Notes on Nomenclature

When talking about optimization with people without extensive background in the field,
missunderstandings are very common. Section 4.1 should provide some basic overview necessary
for clear communication between optimization, numerical analysis and industrial experts. It is also
good to fix some standard expressions which are often used in the context of optimization.

Function f(x) in Equation (1) a) that is minimzed in an optimization problem is called

objective function. Vextor x is a vector of optimization parameters. Optimization problems can be
stated in such a way that there are more than one objective functions. In this case we have
multiobjective optimization and in general there is not a unique solution to such a problem, but we
obtain a whole multidimensional space of solution among which we can choose (which may be
impractical, especially when the dimension of solution space is more than 2 or 3). Other names are
sometimes used for objective function, such as merit function, cost function (which may sound more
appropriate when optimization problem is stated as minimization rather than maximization
problem), discrepancy function (especially in the contect of inverse problems where a measure fo
discrepancy between experimental measurements and those approximated by a numerical model is
minimized).

Functions ci(x) and cj(x) are constraint functions. Equations (1) b) through (1) d) (of which
first two involve constraint functions) are called constraints. Equations (1) b) are called inequality
constraints, equations (1) d) are called equality constraints and equations (1) e) are called bound
constraints. Bound constraints could be stated as normal equality constraints with simple constraint
functionbs, but usually they are stated separately because they are easier to deal with for
optimization algorithms and because evaluation of the corresponding constraint functions does not
require solution of the direct problem.

The set of all points x in the parameter space that satisfy all constraints is called the feasible
set or feasible region. Any such point is called a feasible point.

The objective and constraint functions (i.e. f(x), ci(x) and cj(x)) are collectively called
response functions (or simply respnse) of the optimization problem.

The objective function is defined in accordance with what one want to achieve when stating

and solving the optimization problem (e.g. minimal energy consumption with constraint that time of
the considered operation function must remain under certain limit; or minimal discrepancy between
results of numerical model and experimental results, a common goal in inverse problems and model
calibration). In practical cases there can be more than one goals, often conflicting (e.g. we can also
seek for as small consumption of energy as possible and at the same time as short operation time as
possible). In such a case, the objective function will usually be defined as weighted sum of terms
that measure achievement of individual goals, or more conveniently some nonlinear functions of
such terms. For example, industrial problems can usually be stated in terms of a common goal that
is overal cost or benefit. If it is known how energy consumption or operation time affect the cost
then it is easy to compose an objective function from individual terms. When this is not so obvious
in advance, some parts of the goal statement can be moved to constraints, and this can be iteratively
varied until the solution obtained is as meaningful for our practical situation as possible.

Constraints can have two distinct purposes. In some cases constraints are a logical part of
the definition of the optimization problem and are related to goals we want to achieve. For example,
we want to minimize energy consumprtion in a forming process, but don’t want plastic deformation

 4. Optimization Tools Coordination of Software Development

22

(or some complex measure of material damage) to exceed some specified limit anywhere in the
formed part. The last goal is most logically stated as constraint. Sometimes goals that could be
stated as terms in the objective function are moved to constraints in order to avoid the question of
weighting of objectives or multi-objective formulations.

Another purpose for stating constraints is to avoid solutions that violate some physical laws
(e.g. material with Poisson’s ratio greather than 0.5) or solutions that are infeasible for some natural
reasons (e.g. geometric constraints) or solutions for which numerical calculation of response
functions would be unstable. In these cases it is sometimes necessary to ensure that none of the
points in parameter space where response functions are evaluated (by the optimization algorithm)
are violating certain constraints. Optimization algorithms that are adapded to this requirement are
usually called feasible methods (e.g. ”feasible sequential quadratic programming”).

A single evaluation of all the response functions at the specified value of optimization

parameters is called direct analysis. A module that performs such calculation is also often called
like that (or more precisely the direct analysis module or direct analysis program). This can be as
simpel as a couple of lines of code that use some analytical expressions that define the objective and
constraint functions. It can contain evaluation of some global approximation of response measured
on a real-life system (e.g. by a neural network). In our case, the direct analysis will usually involve
a complete numerical simulation of the system in question at the specified values of optimization
parameters.

Optimization parameters at which direct analysis is performed form the analysis input. The
values of response functions calculated by the direct analysis at specific optimization parameters
form analysis output. However, analysis output can in some cases consists not only of values of the
response functions, but also of their gradients with respect to optimization parameters. Second
derivatives are also provided by the direct analysis in some cases, although this is seldom the case.

When the direct analysis involves a numerical simulation or some other approximation of

the response (e.g. by neural networks), input for these components does not directly coincide with
optimization parametes (the ”analysis input”), as well as output does not coincide with the analysis
output. In order do utilize a numerical simulation for use in solution of optimization problems,
proper mapping must be implemented between the analysis input (or optimization parameters) and
input of numerical simulation, as well as between simulation output and the analysis output (i.e.
response functions and possibly their gradients). This mapping is called parameterization.

At the input side, parameterization can be as simple as arranging values of optimization
parameters to specific places of input file for numerical simulation. This is the case e.g. when
optimization parameters represent material properties, which are directly read as simulation input.
In other cases parameterization is more complex, e.g. when a portion of optimization parameters
defines geometry of object involved in numerical simulation. Such parameters are commonly
referred to as shape parameters. In this case, parameterization involves generation of mesh (used in
simulation) consistent with shape parameters.

At the output side, parameterizatio usually consists of some form of post-processing of
simulation results and calculation of some meaningful output parameters that are arranged in
expression that define how response functions are evaluated. For example, if the objective functions
contains external work applied to the system of interest, then forces dot multiplied by displacements
must be integrated over time and object boundary. Parameterization is therefore usually closely
related to the numerical method used in simulation and must therefore be at least paritially

 4. Optimization Tools Coordination of Software Development

23

performed by the simulation software. In some cases, analysis output also contains gradients of the
response functions. In such cases the numerical simulation (or other kind of approximation, e.g. a
trained neural network) must be specially adapted to generate this information. Such adaptations of
simulation software are commonly categorized as sensitivity analysis. It seems unlikely that we
would build sensitivity analysis into our models in a short-term period (e.g. within the next three
years).

Optimization algorithms are used to solve optimization problems. The optimization

algorithm usually takes some user-specified initial guess and successively changes optimization
parameters in an systematic manner and runs direct analysis at these parameters in order to calculate
the response. Since the procedure must be automatic for almost all practical purposes, any
numerical simulation (or other procedure that used in approximation of response functions, such as
a neural network) must be able to be run in non-interactive manner, e.g. as program that is run via
command-line and terminates after simulation is finished.

The terms direct analysis, direct analysis input and direct analysis output are usedsomehow

ambiguously when describing software architecture. In the strictest sense, the term direct analysis is
used for a function that is called by the optimization algorithm to perform evaluation of
optimization respnse at some specific point in the space of optimization parameters. This is more
strctly called the direct analysis function. Different algorithms in different optimization libraries
usually require different forms of direct analysis functions (with different signatures, i.e. number
and types of arguments). Some algorithms, for example, call separate functions for evaluation of
each individual component of the response (i.e. the objective function, individual constraint
functions, and eventually the gradients thereoff). In our optimization environment we will define
one or two standard forms of analysis function, and will implement adapters (wrappers) for
algorithms that in their original form require different analysis functions. In this way we will be
able to combine any definition of the direct analysis with any built-in algorithm suitable for the
particular problem.

In a less strict way, the term direct analysis is also used for a stand-alone computer program
that is able to read analysis input form files, map it to input for numerical analysis, run numerical
simulation (or other kind of response approximation), post-process results, and write analysis output
to a file. We will define standard analysis input and output file formats for this purpose, and
implement direct analysis functions within the optimization system that will wrap this kind of
analysis functions.

Definition fo the optimization problem refers to the definition of how to calculate the

response functions. This is essentially the definition of the direct analysis.

Optimzation environment is a software environment that is used to define optimization

problems and to run optimization algorithms that calculate numerical solutions to these problems.
Typically, optimization environment enables combination of different definitions of the direct
analysis with different solution algorithms.

 4. Optimization Tools Coordination of Software Development

24

4.2 Data Exchange Between Optimization and Direct Analysis

Analysis request (analysis input file):

{ { p1, p2, … }, { reqcalcobj, reqcalcconstr, reqca lcgradobj,
reqcalcgradconstr }, cd }

Legend:

p1, p1, p3 – optimization parameters at which analysis was performed
Flags that tell whether something has actually been calculated (0 – yes, 1- no):

• reqcalcobj – flag for the objective function
• reqcalcconstr – flag for constraint functions
• reqcalcgradobj – gradient of the objective function
• reqcalcgradconstr – gradients of constraint functions

cd – a free parameter that can be used to transfer additional information to the direct analysis. In principle cd
can be anything embedded in curly brackets ({..}) If only the eventual embedded curly brackets are properly closed.
Most commonly it will not be used at all and therefore empty brackets (“{} ”) will be put in place of cd. Otherwise,
interpretation of what stands in curly bracket is entirely in the domain of the analysis program, therefore the
documentation of the analysis program should provide information on how to compose cd.

Analysis results (analysis output file):

{
 { p1, p2 ... },
 {
 calcobj, obj,
 calcconstr, { constr1, constr2, ... },
 calcgradobj, { dobjdp1, dobjdp2, ... },
 calcgradconstr,
 {
 { dconstr1dp1, dconstr1dp2, ... },
 { dconstr2dp1, dconstr2dp2, ... },
 ...
 },
 errorcode
 },
 { reqcalcobj, reqcalcconstr, reqcalcgradobj, reqc alcgradconstr }
 < , { ind1, ind2, ... }, { coef1, coef2, ... }, d efdata >
}

Legend:

• calcobj – flag for the objective function
• calcconstr – flag for constraint functions
• calcgradobj – gradient of the objective function
• calcgradconstr – gradients of constraint functions

obj – value of the objective functions
constr1, constr2, … - values of the constraint functions
dobjdp1, dobjdp2, ... – derivatives of the objective function with respect to individual parameters (components

of the objective function gradient)

 4. Optimization Tools Coordination of Software Development

25

dconstr1dp1, …, dconstr2dp1, dconstr2dp2 – derivatives of individual constraint functions with respect to
individual optimization parameters – components of gradients of the constraint functions (e.g. dconstr2dp3 is the
derivative of the second constraint function with respect to the third parameter)

errorcode – integer error code of analysis – 0 for no error, usually a negative number for errors, values are
function specific

reqcalcob , reqcalcconstr, reqcalcgradobj and reqcalcgradconstr are request flags for calculation of the
various values, as have been passed to the analysis function. The same as with parameter values, these flags are
requested only for verification. In vast majority of cases these flags will not be used by the optimization program, and
they can simply be set to 1.

Analysis results (analysis output file) for multi-objective case:

{
 { p1, p2 ... },
 {
 calcobj, {obj1, obj2, ... },
 calcconstr, { constr1, constr2, ... },
 calcgradobj,
 {
 { dobj1dp1, dobj1dp2, ... },
 { dobj2dp1, dobj2dp2, ... },
 ...
 },
 calcgradconstr,
 {
 { dconstr1dp1, dconstr1dp2, ... },
 { dconstr2dp1, dconstr2dp2, ... },
 ...
 },
 errorcode
 },
 { reqcalcobj, reqcalcconstr, reqcalcgradobj, reqc alcgradconstr }
 < , { ind1, ind2, ... }, { coef1, coef2, ... }, d efdata >
}

Examples of analysis ouptut files:

{ {1.11, 2.22}, { 1, 6.1605, 1, {-0.165, -2.44} , 1 , {2.22, 4.44}, 1, { {-
1.5, 0.}, {0., -2.} }, 0 }, { 1, 1, 1, 1}, {}, {}, "3" } }

{ {1.11, 2.22}, { 1, 6.1605, 1, {-0.165, -2.44} , 0 , { }, 0, { }, -1 }, { 1,

1, 1, 1}, {33, 45}, {2.5, 3.33 38.1}, "3" } }

Alternative format: XML (analysis output) :

<!-- Analysis output file, created by analysis wrapper. -->
<data type =" analysispoint " mode =" analysis_output " ind =" 1">
 <ret type =" counter "> 0</ ret >
 <reqcalcobj type =" counter "> 1</ reqcalcobj >
 <reqcalcconstr type =" counter "> 1</ reqcalcconstr >
 <reqcalcgradobj type =" counter "> 1</ reqcalcgradobj >
 <reqcalcgradconstr type =" counter "> 1</ reqcalcgradconstr >
 <calcobj type =" counter "> 1</ calcobj >

 4. Optimization Tools Coordination of Software Development

26

 <calcconstr type =" counter "> 1</ calcconstr >
 <calcgradobj type =" counter "> 1</ calcgradobj >
 <calcgradconstr type =" counter "> 1</ calcgradconstr >
 <param type =" vector " dim =" 2">
 <vector_el type =" scalar " ind =" 1"> 1.6</ vector_el >
 <vector_el type =" scalar " ind =" 2"> 1</ vector_el >
 </ param >
 <obj type =" scalar "> 0.20088905308774715</ obj >
 <constr type =" table " eltype =" scalar " dim =" 2">
 <table_el type =" scalar " ind =" 1"> 0.0</ table_el >
 <table_el type =" scalar " ind =" 2"> 0.0</ table_el >
 </ constr >
 <gradobj type =" vector " dim =" 2">
 <vector_el type =" scalar " ind =" 1"> 0.24138</ vector_el >
 <vector_el type =" scalar " ind =" 2"> 0.0172418</ vector_el >
 </ gradobj >
 <gradconstr type =" table " eltype =" vector " dim =" 2">
 <table_el type =" vector " dim =" 2" ind =" 1">
 <vector_el type =" scalar " ind =" 1"> -1.1</ vector_el >
 <vector_el type =" scalar " ind =" 2"> 2.1</ vector_el >
 </ table_el >
 <table_el type =" vector " dim =" 2" ind =" 2">
 <vector_el type =" scalar " ind =" 1"> 0</ vector_el >
 <vector_el type =" scalar " ind =" 2"> -1</ vector_el >
 </ table_el >
 </ gradconstr >
 <!-— Optional definition data: -->
 <cd type =" string "> Definition data</ cd >
</ data >

Figure 7: Examples of data exchange file formats.

4.3 Optimization Shell – Things to be Done First

These things should be tone first, within say a one year period, dependent on other activities:

• I/O Toolbox
o Parser
o Reading/writing analysis data
o Reading optimization data for standard algorithms

• Analysis file client and server
o Standard exchange files and formats
o Basic components, e.g. synchronization with file system
o Integration with internal components

• Optimization file client and server
• Standardization of internal components

o Interfaces for analysis functions, result storage, optimization, etc.

 5. Use of IgLib as Base Library Coordination of Software Development

27

• Toolbox for response inspection
o Derivatives, smoothnes, optimality conditions, etc.
o Response surrogate techniques

• Algorithm kit
o Gradient based
o Robust
o ...?

• Basic graphics
• Rough application outline

5 USE OF IGL IB AS BASE L IBRARY

5.1 About IGLib.NET

Kaj je IGLib

Pred nekaj leti sem se odločil, da bom na novo zgradil framework za optimizacijo. Ta naj bi med
drugim nadomestil tudi večino funkcionalnosti sistema Inverse [8], vendar bi bil zgrajen na
drugačnih, bolj sodobnih konceptih z uporabo izkušenj pridobljenih v letih dela na optimizaciji,
numeričnih simulacijah in tehničnem softveru. Ko je bil narejen koncept Inverse-a, je bila
tehnologija na tem področju na čisto drugem nivoju. Zaradi okoliščin se mi je zdelo bolj smotrno,
kot prilagajati obstoječi framework, postaviti novega od začetka.
Še bolj kot pri Inverse-u sem se želel lotiti zadeve sistematično in pri tem uporabiti dolgoletne
izkušje na različnih področjih. IGLib ([5]-[7]) sem poimenoval osnovno knjižnico, na kateri bi bilo
zgrajeno ogrodje. Knjižnice si nisem zamislil le kot podlago za novi framework, ampak bolj splošno
kot podlago za sistematičen razvoj tehničnih aplikacij. Njen razvoj sem vezal na naslednja načela:

• IGLib bo prosta in odprta knjižnica brez omejitev za uporabo. Na ta način ne bo nobenih
ovir za pridobivanje partnerjev za razvoj, za mednarodno in interdisciplinarno sodelovanje
in za komercializacijo morebitih produktov razvitih na osnovi knjižnice. Če bo kdaj pozneje
v razvoj knjižnice vključenih več partnerskih ustanov, bodo od takšnega sodelovanja vse
imele korist, ker jim bo takoj dostopno, kar so v okviru knjižnice razvili drugi.

• Moja začetna motivacija za razvoj knjižnice je uporaba le te na svojih projektih. Energija, ki
jo vlagam v sistematično načrtovanje arhitekture, se mi povrne pri bolj efektivnem razvoju
končnih produktov.

• Knjižnica bo odvisna od številnih drugih knjižnic za različne stvari (npr. linearno algebro,
procesiranje signalov, risanje grafov itd.), pogoj za vse takšne zunanje knjižnice, ki so njen

 5. Use of IgLib as Base Library Coordination of Software Development

28

del, pa je kompatibilnost licenc. Če bo pri razvoju neke aplikacije prav prišla kakšna
knjižnica, katere licenca ni kompatibilna z IGLib (in bi zaradi tega prišlo do omejitev glede
uporave knjižnice), se vsi deli odvisni od te knjižnice zapakirajo v drugo knjižnico, ki pa je
seveda lahko odvisna tudi od IGLib.

• Knjižnica temelji na ogrodju .NET in je napisana v jeziku C#. Ker je .NET lastniško okolje
Microsofta, je dolgoročno namen ohranjati kompatibilnost z ogrodjem Mono, ki je prosta
odprtokodna (zaenkrat delna) implementacija .NET-a. S tem bo zagotovljena prenosljivost
tudi na druga sisteme, npr. Linux.

• Velik poudarek je na sistematičnem razvoju in dobrem planiranju knjižnice. V zvezi s tem je
postavljenih neakaj načelnih pravil.

o Ko se pojavi potreba po novem orodju ali funkcionalnosti, ki je dovolj splošne
narave, da bi spadala v knjižnico, se pri implementaciji najprej razmisli, kako bi bilo
to narejeno v okviru širšega modula knjižnice, ki pokriva področje, kamor to spada.
Potem se navadno implementira samo specifičen del, ampak na način, da je to
razširljivo v konsistenten splošen modul z dobro zastavljeno arhitekturo

o Kadar preveč sistematično vključevanje funkcionalnosti ni smotrno (recimo, kadar bi
to zahtevalo preveč energije ali bi odvračalo pozornost od treutnega cilja), se pri
implementaciji uporabi kompromis in se označi, da gre za del kode, ki še ni zrel za
vključitev v knjižnico. V knjižnici bo več ločenih nivojev in koda bo prehajala od
najbolj osnovnega (grobi osnutek za testiranje konceptov) v zreli del, kjer se bo
težilo k čimvečji stalnosti.

o V zrelem delu knjižice so postavljeni kriteriji za dokumentacijo kode, izgradnjo
testnih primerov za testiranje funkcionalnosti in druga pravila za zagotavljanje
kvalitete kode.

o Spodbuja se kolaborativni pristop, kjer imajo vsi vpleteni korist od sodelovanja.

o Spodbuja se mnogoterost idej. Če ima več ljudi različno vizijo o tem, kako bi
implementirali isto funkcionalnost, lahko vsak naredi svoj modul in ga vključi v
knjižico. Sčasoma se bo pokazalo, katera ideja bo pridobila več uporabnikov in
razvijalcev.

• V določenem obdobju bom imel sam kontrolo nad načrtovanjem knjižnice, dokler ne bo
knjižnica dovolj razvita, da bo možno vodenje razvoja tudi v širših ovirih.

Nekaj primerov stvari, ki so že vključene v knjižnico ali so v razvoju: osnovna linearna algebra
(brez razpršenih matrik), vmesniki za definicijo funkcij, osnovni moduli za razvoj optimizacijskih
algoritmov, 2D diagrami, celovit sistem za javljanje napak in ostala sporočila, interaktivni ukazni
kalkulator, interpreterski moduli, ki omogočajo uporabniku sestavo operacij, osnova za izgradnjo
vmesnikov preko datotečnega sistema in podobno.

 5. Use of IgLib as Base Library Coordination of Software Development

29

Ker imam dobro izdelano sliko o tem, kaj bi rad od optimizacijskega ogrodja, imam zaenkrat to za
rdečo nit razvoja, hkrati pa imam pri načrtovanju vedno v mislih tudi šuiršo uporabnost.

Kako bi vključil IGLib v tvoje okolje in kakšne so prednosti

Knjižnico bi vključil na podoben način, kot jo vključujem v ostale svoje projekte, torej kot bazično
knjižnico, kjer se na urejen in načrten način akumulira funkcionalnost splošne narave, ki je potrebna
pri sprotnem razvoju končnih produktov. Tisti del, ki je knjižnica, odtane odprt in obdrži zgoraj
navedene lastnosti. Stvari, ki so končni produkti ali vsebujejo algoritme in druge stvari, ki so
pomembne za skupino, bodo zapakirane v samostojne module in aplikacije, ki ne bodo prosto
dostopne.
Prednosti uporabe knjižnice so različne. Meni in pozneje tudi ostalim bo olajšala delo, ker vsebuje
veliko že narejenih stvari in se bo nabor teh stvari širil na sistematičen način. Knjižnica ima
homogeno zgradbo in temelji na enotnih in dodelanih konceptih, ki se bodo še dopolnjevali.

Koncept knjižnice dolgoročno omogoča motiviranje strokovnjakov, da se pridružijo uporabi in
razvoju knjižnice. To prinese vzajemno korist vsem, ki uporabljajo knjižnico, ker se poveča
razvojni potencial, več uporabnikov odkrije tudi več napak, prispevanje k razvoju odprtih knjižnic
pa je tudi dobra referenca za tiste, ki prispevajo. Organizacija razvoja okrog takšne knjižnice
predstalvja tudi dobro osnovo za razvoj timskega dela v razvojni skupini, omogoči lažjo
povezljivost rezultatov zaradi dodatnega nivoja standardizacije, ki se spontano uporablja in razvija,
ter prispeva k hitrejšemu napredovanju razvojnega potenciala članov skupine.

Če se kdaj pozneje odloči, da bi bilo bolj smotrno knjižnico zapreti, se to vedno lahko naredi tako,
da se obdrži trenutno stanje knjižnice, ki se potem razvija naprej ločeno od originala (ki bo ostala
odprta knjižica) in se dajo vse spremembe pod drugo licenco. Licenca knjižnice namreč ne postavlja
kakšnih omejitev glede komercialne uporabe ali predelave ali licenciranja izpeljanih produktov.

Povezava z mojim delom na splošno

Kot sva se že pogovarjala, si bom pri usklajevanju razvoja softvera prizadeval za čimvečje
poenotenje razvoja in tesno sodelovanje članov skupine pri tem. To pa ne pomeni, da vidim
dolgoročno IGLib kot osnovo za ves softverski razvoj. Možno je, da bodo tudi dolgoročno določeni
deli razvoja softvera osnovani na drugih platformah kot IGLib, npr. lahko se izkaže, da bo
simulacijski del najbolje osnovati na nativnem C++. V splošnem ni zelo narobe, če se kot osnova za
razvoj uporabljajo dve ali tri platforme, če za to obstajajo tehtni razlogi. Takšne odločitve so
dolgoročne in nekaterih ne bo možno sprejeti takoj. Bi pa na .NET in IGLib zasnoval razvoj
povezovalne platforme, na kateri bomo integrirali razvite produkte, to bo vključevalo tudi
optimizacijsko lupino. V začetni fazi bo povezovanje različnih že narejenih delov sistema potekalo
preko vmesnikov med njimi, ki bodo v glavnem temeljili na izmenjavi podatkov preko datotečnega
sistema in sistemskih ukazov za poganjanje aplikacij. Tak način povezovanja ni vedno najbolj
optimalen, kar se hitrosti tiče, je pa najbolj pregleden in obvladljiv, kar bo v našem primeru
prevladujočega pomena.

 5. Use of IgLib as Base Library Coordination of Software Development

30

Spodaj navajam še vsebino licence za knjižnico. Ta se bo morda v prihosnosti še dopolnjevala, cilj
pa je ohraniti vsebino zelo kratko in razumljivo.

==== Vsebina licence za knjižnico:

Opombe:
Načrtoval sem, da bo IGLib nekoč pod odprtokodno licenco (glej spodaj pod possible future
license), vendar moram najprej zagotoviti ustrezno stanje knjižnice in zadostno kontrolo nad njenim
razvojem. To med drugm pomeni zadosten obseg knjižnice in zadosten razvojni potencial okrog
knjižnice, ki bo pod mojim vodstvom, da bom lahko zagotovil, da bo razvoj potekal v pravo smer
(to med drugim pomeni, da bo knjižnica na dolgi rok ustrezala svojemu namenu in bo dobro služila
interesentom, med katerimi bi bil tudi Laboratorij za večfazne procese). Do takrat bom obdržal
malo bolj restriktivno licenco za knjižnico, ki bo hkrati omogočila potrebno razpolaganje
interesentom in zagotavljala, da ohranim kontrolo nad razvojem knjižnice. Spodaj je predlog te
licence.
Za točen tekst licence glej navodila in dokumentacijo ([6], [7]).

5.2 IGLib License Agreement

This is a license agreement for the IGLib utility library ("the software") and its documentation,
which are owned and copyrighted by Igor Grešovnik, Jamova 80, Ljubljana. The software subject to
this license agreement includes all files that are contained in the software directory (i.e. the root
directory where this license file is located, and all its subdirectories).

The software and its documentation are developed and copyrighted by Igor Grešovnik, Ljubljana,
Slovenia ("the author"), except for individual parts of the software for which separate different
copyright notices are provided. The following terms apply to all files associated with the software
unless explicitly disclaimed in individual files.

The author hereby grants the limited rights to use the software to the following licensees ("the
licensees"):

• Group of Professor Božidar Šarler within the Laboratory for Multiphase Processes of the
University of Nova Gorica; responsible person: Božidar Šarler.

• Group of Professor Božidar Šarler within the Laboratory for Supervisory Systems of the
Centre of excellence for Biosensors, Instrumentation and Process Control; responsible
person: Božidar Šarler.

The present license agreement is the agreement between the author and the licensees that defines
the terms and conditions for use of the software. By using the software, licensees accept the terms
of this license agreement. The responsible persons stated above shall be responsible for execution of
the terms of this license agreement by the individual licensees.

 5. Use of IgLib as Base Library Coordination of Software Development

31

5.2.1 Grant of Rights

The author hereby grants, and licensees hereby accept, subject to the terms and conditions of this
Agreement, a nonexclusive, nontransferable and nonassignable license to use the software in in
order to create Derivative Products.

Licensees can use, license, sell, and distribute their products derived from the software without any
limitations, except that the source code of the software may only be used by licensees and may not
be shipped together with derived products or distributed by licensees in any other way, unless a
prior written consent is provided by the author. Licensees may not give to third parties any technical
details or documentation of the software, unless a prior written consent is provided by the author.

Licensees are obliged to retain this license agreement and all copyright notices in all copies of the
software. In any derived products, licencees shall acknowledge use of the software with a notice
that is easily accessible to the users of these derived products.

The author and the licensees hereby agree that they will jointly develop the software with the
purpose of its improvement and extension in order to fit their needs. Such development will be
performed under guidance and with consent of the author. All modifications of the software will be
copyrighted by the author and will be subjected to the terms of the present license agreement.

5.2.2 Statement of Intention and Obligations

The intention and common interest of the author and the licensees is to develop and continuously
improve a good base library for development of their applications, and will jointly pursue after
efficient and high level development work in order to produce good and useful software from which
all of them will benefit. In long term, the author intends to broaden the circle of developers and
users of the software and may eventually release the software under a free open source license in
order to attract a broader community of collaborative developers and users. The intention of the
author and licensees is to maintain longer term collaboration on the development and use of the
software.

Within the period in which licensees and the author will jointly work on the library, any
contributors will be respoinsible for maintaining integrity and good quality of the library. They will
refrain from any actions that might harm the usability, quality or good reputation of the library.

Within the period in which the software is used as base library for development of derived product
at licensees' institutions, main contributors to the libraries derived from the software will be granted
similar rights as stated in the current license agreement. This means that the main contributors will
be able to use the developed libraries to which they contribute over this period, under similar terms
as stated in this license agreement, to derive their own products from these libraries. In particulat,
they will be allowed to use, license, sell, and distribute such derived products without any
limitations, except that the source code of the derived products may not be distributed. However,
this right will be granted only for libraries and applications that do not contain any trade secrets or
vital knowhow that is used for commercial purposes (and which the involved institutions - the

 5. Use of IgLib as Base Library Coordination of Software Development

32

licensees - do not want to reveal publically). Such non-disclosable contents will be separated from
basic technical libraries and put into specialized units (applications and high-lever libraries).
Contributors who are granted rights from the current paragraph will be selected by the author of the
software.

In addition to the rights stated in the previous paragraph, the author of the software, Igor Grešovnik,
will retain the right to spawn his own continuous development thread for any of the derived libraries
mentioned in the previous paragraph, and to use, develop and copyright such a newly created
library without any limitations. In the case that such a fork event occurs, the author must assign a
new name to his forked version of the library, and may only include in this version the code of the
original library that was created before the fork event occurred, unless agreed otherwise by the
copyright holder of the original library.

Licensees will pursue the goal that the products derived from the software are as open and as widely
disseminated as possible, especially when creation of such derived products is partially or fully
supported by public funding.

5.2.3 Disclaimer

IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LI ABLE TO ANY
PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES ARISING OUT OF THE USE OF THIS SOFTWARE, IT S
DOCUMENTATION, OR ANY DERIVATIVES THEREOF, EVEN IF THE AUTHORS
HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE .

THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPL IED WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOS E, AND NON-
INFRINGEMENT. THIS SOFTWARE AND ITS DOCUMENTATION A RE PROVIDED
ON AN „AS IS“ BASIS, AND THE AUTHORS AND DISTRIBUTO RS HAVE NO
OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES ,
ENHANCEMENTS, OR MODIFICATIONS.

5.3 Possible future License Agreement for
IGLib

This software and its documentation are developed and copyrighted by Igor Grešovnik, Ljubljana,
Slovenia, except for individual parts of the software for which separate different copyright notices

 5. Use of IgLib as Base Library Coordination of Software Development

33

are provided. The following terms apply to all files associated with the software unless explicitly
disclaimed in individual files.

The authors hereby grant permission to use, copy, modify, distribute, and license this software and
its documentation for any purpose, provided that existing copyright notices are retained in all copies
and that this notice is included verbatim in any distributions. No written agreement, license, or
royalty fee is required for any of the authorized uses. Modifications to this software may be
copyrighted by their authors and need not follow the licensing terms described here, provided that
the new terms are clearly indicated on the first page of each file where they apply.

IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LI ABLE TO ANY
PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES ARISING OUT OF THE USE OF THIS SOFTWARE, IT S
DOCUMENTATION, OR ANY DERIVATIVES THEREOF, EVEN IF THE AUTHORS
HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE .

THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPL IED WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOS E, AND NON-
INFRINGEMENT. THIS SOFTWARE AND ITS DOCUMENTATION A RE PROVIDED
ON AN „AS IS“ BASIS, AND THE AUTHORS AND DISTRIBUTO RS HAVE NO
OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES ,
ENHANCEMENTS, OR MODIFICATIONS.

5.4 IGLib README

==== Content of the file Readme.html:

IGLib.NET (Investigative Generic Library) is a set of utility libraries that are particularly suited for
development of technical applications.

 The system has been designed and developed by Igor Grešovnik, who set up its foundations in
2006 and is leading its development. In longer term, the library is intended for distribution as free
open source under a BSD-like license. However, the library will not be open for public immediately
because the author wants to achieve a certain level of maturity first and stabilize library
development within a smaller group of dedicated developers. Hopefully the library will be released
as free open source library by the end of 2013. Before this happens, groups and individuals can join
development (and usage) of the library by individual agreement with the principal author. The
author is open to such arrangements but would like to retain a good control over development until
a certain level of maturity is reached. He believes that such position will be beneficial for future
users and developers.

 Since 2011, the library is used by the Laboratory for Multiphase Processes of the University of
Nova Gorica, and by the Laboratory for Advanced Materials Systems of the Centre of Excellence
for Biosensors, Instrumentation and Process Control, where it is used as base library for
development of applications in the field of neural networks and optimization. These grous use the

 5. Use of IgLib as Base Library Coordination of Software Development

34

code under a customized license agreement and also contribute to library development in a limited
extent.

 IGLib contains some basic utilities like those for parsing of strings, a couple of utilities for
building GUI, a numerical library, and other components. It aims at providing a well designed base
library for developnent of complex numerical and other technical applications. Parts of IGLib have
also been used in other areas such as a system for managing a histological laboratory or large scale
invoicing support system.

 Historically, the initial motivation for development of the library arose from the needs to have a
good base library for development of complex optimization software, but the library was planned in
a much broader sense since the very beginning of its existence. For more information, check the
library home page at

 http://www2.arnes.si/~ljc3m2/igor/iglib/,

or check code documentation at

 http://dl.dropbox.com/u/12702901/code_documentation/generated/iglib/html/index.html.

External Libraries
 This library depends on a number of external free open source libraries. Authors of the code are
grateful to all developers that invested their work to develop these libraries and who made them
open and accessible to the public.

 The following external libraries are used:

• Math.Net, an excellent scientific library written entirely in C#. Iridium and Neodym
libraries are used from this project.

• ZedGraph, a flexible charting library for .NET.

• NPlot, an easy to use 2D plotting library.

• Activiz, C# wrappers for the VTK 3D graphics library.

Please visit the home pages of these great libraries (just follow the links above) and consider
whether you can support their development in some way.

Authors' index
Below is the list of authors' synonims used in the code:

• Igor - Igor Grešovnik, Črneče 147, Ljubljana, Slovenia (gresovnik (at) gmail (dot) com)

• Tako78 - Tadej Kodelja, Slovenia (tadej (dot) kodelja (at) gmail.com)

• Vertnik - Robert Vertnik, Slovenia (robert (dot) vertnik (at) gmail (dot) com)

• Katarina - Katarina Mramor, Slovenia (kmramor (at) gmail (dot) com)

 6. General Management of Simulation Framework - Suggestions Coordination of Software
Development

35

6 GENERAL MANAGEMENT OF SIMULATION FRAMEWORK -
SUGGESTIONS

6.1.1.1 From Mail to Božidar & Robert, Nov 26 2010

Spodaj sem poskusil zgoščeno in okvirno predstaviti zamisel o tem, kako uredimo razvoj,

pravice in dostop do razvitega simulacijskega softvera. O teh stvareh bi morali v doglednem času
sprejeti neke osnovne odločitve, bomo pa verjetno rabili nekaj časa, da izmenjamo in uskladimo
poglede.

Softver bo logično sestavljen iz več nivojev: osnovne knjižnice, višjenivojske knjižnice,

simulacijsko ogrodje, splošne simulacijske aplikacije in kustomizirane industrijske aplikacije.

Precej časa bodo verjetno vse, kar bomo naredili za industrijo, kustomizirane industrijske

aplikacije. Lahko, da bomo kdaj tudi prodajali splošne licence (podobno, kot so npr. licence za
Fluent), vendar si v naslednjih treh letih težko predstavljam to možnost.

Kar se tiče kustomiziranih industrijskih aplikacij, bodo to zaprte kode. V vsakem primeru

posebej se bomo morli z naročnikom dogvoriti, ali hoče imeti ekskluzivo glede uporabe in na
katerih delih softvera. V večini primerov naročniku ne bomo prodali softvera (to bi pomenilo, da
izgubimo vse pravice na tem softveru), ampak licence za uporabo.

Tudi pri kustomiziranih aplikacijah bo lahko samo del kode tak, ki bo resnično vezan na

specifično aplikacijo in za katerega lahko naročnik zahteva ekskluzivne pravice. Če v kakšnem
primeru ne bo tako, bo softver seveda bistveno dražji za naročnika, v tem trenutku nimamo niti
kapacitet, da bi lahko kaj takšnega naredili. Da bomo lahko ostajali na nivoju, je za nas nujno, da
imamo velik del softvera, ki ne pade v kakšne ekskluzivne pogodbe.

Dele kustomiziranih aplikacij, ki jih bomo razvili za kakšno konkretno naročilo, bomo v

večini primerov tako ali tako morali zapreti. V našem interesu je vedno, da čim manjši del softvera
pade v to kategorijo, da bomo lahko iste stvari uporabili čim večkrat. Najbolj idealna situacija pri
industrijskih naročilih je, če moramo zapreti samo mali del softvera, ki se res tiče le zelo specifičnih
stvari za dano naročilo (npr. konkretnih strojev ali procesov, ki jih simuliramo).

Pri osnovnih knjižnicah in tudi pri osnovnem simulacijskem ogrodju bi na vsak način

poskusil ohraniti čimvečjo odprtost. To nam bo med drugim omogočilo tudi uporabo veliko
odprtokodnega softvera, ki je že narejen in s katerim rešimo del svojih problemov. S takšno
odprtostjo lahko veliko pridobimo pri prepoznavnosti naše skupine, predvsem v akademskem
okolju. Na ta način lahko tudi motiviramo druge, da uporabljajo naš softver in se morda tudi
priključijo razvoju. Že samo uporaba softvera v čim širšem obsegu je koristna, ker bomo tako dobili
povratne informacije o tem, kaj ne dela v redu in kaj bi lahko bilo bolje zastavljeno.

 6. General Management of Simulation Framework - Suggestions Coordination of Software
Development

36

Pri koristnem povezovanju navzven vidim dva možna načina, kako se to lahko zgodi. Prvi
način je, da ljudje, ki bodo od nas šli delat v drugo okolje in bodo navajeni na uporabo našega
softvera (ga bodo tudi razvijali), prenesejo ta softver v svoje novo okolje. Potem se lahko
dogovorimo, da prispevajo k našemu razvoju, ali pa da ga samo uporabljajo in nam sofinancirajo
razvoj. Če bo vse OK, bomo mi imeli dovolj močan razvojni potencial, da jim bo to bolj v interesu,
kot pa začeti novo vejo razvoja in sami razvijati softver naprej. Za primere, ko bi vseeno hoteli
začeti svojo vejo, se moramo dogovoriti, kateri del softvera lahko za to uporabijo.

Drugi način povezovanja je, da nekdo drug pride do nas z interesov, da bi uporabil naš
softver kot osnovo za svoje stvari. Ko bomo enkrat imeli dobro osnovo in če bomo odprli del
softvera, se bo verjetno našel tudi kdo, ki bo zainteresiran za kaj takšnega.

V vsakem primeru se mi zdi koristno prizadevati si, da še drugi uporabljajo naš softver, ker s

tem pridobivamo ugled in reference ter dokazujemo, da je naš softver kvaliteten (s tem je podobno
kot s citati pri člankih). Tako pridobimo tudi koristne povratne informacije in dodatno kontrolo
kakovosti (če je več oči, ki gleda softver, se najde in odpravi tudi več pomanjkljivosti), tudi v
primeru, da drugi softver samo uporabljajo.

Pri odprtih kodah se navadno vzpostavi več interesnih skupin ljudi: takšni, ki dejansko

prispevajo tudi pri razvoju, aktivni uporabniki, ki ti dajejo zelo koristne povratne informacije, in
pasivni uporabniki, ki samo uporabijo softver. Navadno je zelo tažko in v večini primerov
neefektivno ločiti med temi skupinami in npr. dati dostop do kode samo prvi skupini, ker potem to
ni odprta koda in izgubi svojo funkcijo pri privabljanju potencialov, pa tudi marketinška funkcija
takšne kode zbledi. V glavnem imamo v praksi dve možnosti - ali kodo čisto odpremo, ali pa jo
zapremo in se dogovarjamo z zunanjimi skupinami za skupni razvoj na podlagi bilaterarnih pogodb,
kjer so (navadno precej komplicirano) določene vzajemne obveznosti in pravice. Govorim seveda o
delu kode, ki pa mora biti funkcionalno zaključena celota. Po mojem mnenju je odločitev za odprto
kodo v našem primeru zdaleč najboljša, ker bomo vsaj delno še vedno delovali v akademskem
okolju in bomo na ta način lahko izrabili veliko priložnosti, ki se v tem okolju ponujajo (pridobivali
bomo ugled in še prišli do zastonj razvojnih kapacitet). Da del kode odpremo, da mi zdi tudi z
moralnega vidika korektno, saj bomo razvoj v veliki meri pokrivali iz javnih sredstev. Jaz bi tudi
ljudem, ki bodo delali na razvoju kode, dal pravico, da svoj del kode npr. po končanem doktoratu
vzamejo in z njim prosto razpolagajo, ker bo to zelo dobra motivacija za to, da vlagajo svoj trud v
razvoj kode. To jim seveda nič ne bo koristilo, če bodo lahko vzeli samo tisto, kar bodo sami
napisali, ampak mora biti sem vključena funkcionalno zaključena celota, da bodo lahko svoje stvari
dejansko tudi uporabili.

Osebno vidim le dva argumenta proti odprtosti kode: da lahko pride do situacije, ko bomo

težko vzdrževali nadzor nad razvojem, in da lahko nekdo poceni pride do tega, kar smo s trudom
razvili, in ali postane naša konkurenca ali pa zaradi tega ne bi od nas kupil storitev, ki jih sicer bi.

Zaradi nadzora bi izvedel odpiranje kode postopma. Licence in te stvari lahko uredimo

takoj, praktičen dostop do odprtega dela kode (upload na strežnike itd.) pa lahko uredimo pozneje,
ko bo koda v dovolj zrelem stanju in bomo imeli dovolj razvojnih potencialov. Vedno imamo mi
možnost voditi razvoj (tudi, če izdamo kodo pod odprto licenco), težave lahko imamo samo, če bi

 6. General Management of Simulation Framework - Suggestions Coordination of Software
Development

37

bil prevelik naval ljud, ki bi se hoteli v to vključiti. Tudi za ugled ni dobro, če delamo reklamo za
kodo, ki je še zelo nedodelana.

Probleme s konkurenčnostjo bi reševal na ta način, da ne damo vsega, kar sodi v osnovno

simulacijsko kodo, takoj v odprti del, ampak pri najbolj vrhunskih stvareh (ki lahko za nas
pomenijo pomembno konkurenčno prednost in ki še niso lahko dostopne drugje) to naredimo s
časovnim zamikom. Na začetku bi takšne module dali v zaprti del kode in se seveda hkrati
pohvalili, da imamo za ta in ta problem odličen algoritem, ki ga lahko stranke dobijo preko
komercialnega naročila (ravno za takšno oglaševanje nam lahko v prihodnosti odlično služi portal,
preko katerega bomo distribuirali odprto kodo). Tu bomo morali iskati dober kompromis med tem,
da je odprti del kode vseeno dovolj funkcionalen, profesionalno narejen in stabilen, in med tem, da
imamo v zaprtem delu dovolj adutov, da nam drugi težko konkurirajo. V vsakem primeru bo naš
največji adut, če uspemo narediti dober tim in organizirati delo, kot je treba, ker nas bo v tem
primeru vsak težko dohajal.

Celotna slika bi bila po mojem predlogu takšna:
Imamo dobro dizajnirano odprtokodno ogrodje z vzpostavljenim odličnim notranjim

razvojnim potencialom. Vse doktorate vprežemo v to, da to ogrodje izboljšujemo in učinkovito
akumuliramo orodja potrebna za dobro simulacijsko kodo (grafika, definicija vhodnih podatkov,
solverji in druge numerične knjižnice, definicija kompleksnih geometrij, dober remeshing, adaptivni
inkrementalni algoritmi, različni numerični triki itd.). Bolj ko bo to okolje dodelano, lažje bomo
pritegnili dodatne razvojne potenciale (doktorandi iz tujine in postdoktorandi, ki si bodo želeli delati
v naši skupini, ter zunanje raziskovalne skupine, ki se bodo želele vključiti v razvoj) in večji bo naš
ugled, ki bo koristen pri pridobivanju poslov.

Poleg odprtega okolja imamo plast modulov in algoritmov, ki po vsebini sicer spadajo v
osnovni nivo, vendar so zelo zmogljivi glede na trenutno stanje razvoja tako da niso zlahka dostopni
na trgu. Ta del je zaprt, v večini primerov za dovolj dolgo omejeno obdobje (dokler to ne postane
nekaj običajnega in splošno dostopnega). Te algoritme vključujemo v nekatere aplikacije po
naročilu in jih po možnosti delimo s partnerskimi skupinami, ki v zameno ponudijo kaj drugega.

Nad tem imamo plast orodij, ki so bolj vezana na industrijske primere in jih nočemo mešati
v odprto okolje, ker so preveč specifična. Te stvari so v glavnem zaprte za zunanjo uporabo, včasih
jih lahko damo v kakšno odprto knjižnico zaradi reklamnih namenov, v vsakem primeru pa ta del
kode poskušamo obdržati izven modulov, ki padejo pod kakšne ekskluzivne licence, da jih lahko
brez težav uporabimo za več naročnikov.

Zadnjo plast predstavljajo kustomizirane aplikacije po naročilu komercialnih strank ali
takšne, ki nastanejo v okviru skupnih projektov z industrijo. Ta nivo mora biti v vsakem primeru
zaprt za zunanji dostop, saj bo pogosto vseboval informacije, ki lahko predstavljajo poslovne
skrivnosti industrijskih partnerjev. V nekaterih primerih tudi znotraj skupine ne bodo imeli vsi
dostopa do takšnih delov kode.

 6. General Management of Simulation Framework - Suggestions Coordination of Software
Development

38

References:

[1] Doug Lea: Draft Java Coding Standard. Electronic document, available at
http://g.oswego.edu/dl/html/javaCodingStd.html.

[2] C# Coding Standards & Best Practices. Electronic document, available at
http://www.dotnetspider.com/tutorials/CodingStandards.doc.

[3] Igor Grešovnik: Programmers’ guidelines for Development of Software within COBIK
& Laboratory for Multiphase Processes. Treatise, COBIK, 2012.

[4] Igor Grešovnik: IoptLib, electronic document at
http://www2.arnes.si/~ljc3m2/igor/ioptlib/.

[5] Igor Grešovnik: IGLib.NET, electronic document at
http://www2.arnes.si/~ljc3m2/igor/iglib/index.html.

[6] Igor Grešovnik: IGLib Documentation, electronic document at
http://dl.dropbox.com/u/12702901/code_documentation/generated/iglib/index.html .

[7] Igor Grešovnik: IGLib.NET Code Documentation, electronic document at
http://dl.dropbox.com/u/12702901/code_documentation/generated/iglib/html/index.html
.

[8] Igor Grešovnik: Optimization program Inverse, electronic document at
http://www2.arnes.si/~ljc3m2/inverse/index.html.

 Sandbox (this is not a part of this document)

39

