A discrete dynamical system: an electric dipole moment, which is free to rotate, in a pulsating electric field.
More...
|
void | TakeAStep () |
| Calculates the values of fi and p in the next time step (tNext = t + tau) and puts them in to More...
|
|
|
string | _name = "Kicked rotator state portrait (torus)" |
|
double | _tau = 1.0 |
| Time interval between two pulses. More...
|
|
double | _konst = 0.5 |
| Interaction constant = electric dipole moment * E-field amplitude / moment of inertia . More...
|
|
double | _k |
| Kicking strength. No user input point: read the description of the parmeter Konst. More...
|
|
int | _nSteps = 300 |
|
double | _fi0 = Math.PI / 2 |
| The initial angle between the E-field vector and the electric dipole moment. More...
|
|
double | _p0 = 0 |
| The angle that the rotator turns in one time interval tau. p = tau * omega, omega = gamma/J, gamma -> angular momentum. More...
|
|
string | _title |
|
|
string | Name [get, set] |
|
double | Tau [get, set] |
| Time interval between two pulses. More...
|
|
double | Konst [get, set] |
| Interaction constant = electric dipole moment * E-field amplitude / moment of inertia. More...
|
|
int | NSteps [get, set] |
|
double | Fi0 [get, set] |
| The initial angle between the E-field vector and the electric dipole moment. More...
|
|
double | P0 [get, set] |
| The angle that the rotator turns in one time interval tau. p = tau * omega, omega = gamma/J, gamma -> angular momentum. More...
|
|
string | Title [get, set] |
| The plottable model's name. Also used as a plot title. More...
|
|
List< double[]> | PlottableData [get, set] |
| The main solution array, which is used by the plotter. More...
|
|
A discrete dynamical system: an electric dipole moment, which is free to rotate, in a pulsating electric field.
For more info go to: http://en.wikipedia.org/wiki/Kicked_rotator .
IG.MPetekLib.Algorithms.PlottableModels.KickedRotator.KickedRotator |
( |
| ) |
|
|
inline |
void IG.MPetekLib.Algorithms.PlottableModels.KickedRotator.TakeAStep |
( |
| ) |
|
|
inlineprotected |
Calculates the values of fi and p in the next time step (tNext = t + tau) and puts them in to
the solution array.
.
void IG.MPetekLib.Algorithms.PlottableModels.KickedRotator.Solve |
( |
| ) |
|
|
inline |
string IG.MPetekLib.Algorithms.PlottableModels.KickedRotator._name = "Kicked rotator state portrait (torus)" |
|
protected |
double IG.MPetekLib.Algorithms.PlottableModels.KickedRotator._tau = 1.0 |
|
protected |
Time interval between two pulses.
double IG.MPetekLib.Algorithms.PlottableModels.KickedRotator._konst = 0.5 |
|
protected |
Interaction constant = electric dipole moment * E-field amplitude / moment of inertia .
double IG.MPetekLib.Algorithms.PlottableModels.KickedRotator._k |
|
protected |
Kicking strength. No user input point: read the description of the parmeter Konst.
int IG.MPetekLib.Algorithms.PlottableModels.KickedRotator._nSteps = 300 |
|
protected |
double IG.MPetekLib.Algorithms.PlottableModels.KickedRotator._fi0 = Math.PI / 2 |
|
protected |
The initial angle between the E-field vector and the electric dipole moment.
double IG.MPetekLib.Algorithms.PlottableModels.KickedRotator._p0 = 0 |
|
protected |
The angle that the rotator turns in one time interval tau. p = tau * omega, omega = gamma/J, gamma -> angular momentum.
string IG.MPetekLib.Algorithms.PlottableModels.KickedRotator.Name |
|
getset |
double IG.MPetekLib.Algorithms.PlottableModels.KickedRotator.Tau |
|
getset |
double IG.MPetekLib.Algorithms.PlottableModels.KickedRotator.Konst |
|
getset |
Interaction constant = electric dipole moment * E-field amplitude / moment of inertia.
Whenever you are not interested in the internal parameters and only wish to vary the kicking strength,
simply set Tau = 1 and vary Konst.
Referenced by IG.Script._25KickedRotator.Run().
int IG.MPetekLib.Algorithms.PlottableModels.KickedRotator.NSteps |
|
getset |
double IG.MPetekLib.Algorithms.PlottableModels.KickedRotator.Fi0 |
|
getset |
double IG.MPetekLib.Algorithms.PlottableModels.KickedRotator.P0 |
|
getset |
The angle that the rotator turns in one time interval tau. p = tau * omega, omega = gamma/J, gamma -> angular momentum.
Referenced by IG.Script._25KickedRotator.Run().
The documentation for this class was generated from the following file:
- shelldev/0guests/marko_petek/Guest_Marko_Petek_Lib/algorithms/PlottableModels/DynSys/01KickedRotator.cs