IGLib  1.7.2
The IGLib base library EXTENDED - with other lilbraries and applications.
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Events Macros
IG.Num.NeuralTrainingParameters.ComparerBase Class Reference

Base comparer class (implementation of the IComparer{NeuralTrainingParameters} interface) for conmparing objects of type NeuralTrainingParameters More...

+ Inheritance diagram for IG.Num.NeuralTrainingParameters.ComparerBase:
+ Collaboration diagram for IG.Num.NeuralTrainingParameters.ComparerBase:

Protected Member Functions

double OutputNorm (IVector vec)
 

Protected Attributes

IVector _outputScalingLengths
 
bool _compareMinError = false
 
int _numLastErrors = 1
 
int _numBundles = 0
 
bool _compareByTrainingRmsError = true
 
bool _compareByTrainingMaxError = false
 
bool _compareByVerificationRmsError = false
 
bool _compareByVerificationMaxError = false
 

Properties

IVector OutputScalingLengths [get, set]
 Vector of scaling lengths for calculation of weighted norms. More...
 
bool CompareMinError [get, set]
 Whether the min error in convergence table is used for comparison when errors are compared. If false then mean value of last errors is used. More...
 
int NumLastErrors [get, set]
 Number of last errors in convergence list for calculataing the mean value of error. The default valeu is 1 which represent the last error in the converhence list. More...
 
int NumBundles [get, set]
 Number of bundles where sorting of convergences stars. The default valeu is 0 which represent normal sorting after the training is done. More...
 
bool CompareByTrainingRmsError [get, set]
 Whether training RMS errors from convergence tavble are compared. More...
 
bool CompareByTrainingMaxError [get, set]
 Whether Maximal absolute training errors from convergence tavble are compared. More...
 
bool CompareByVerificationRmsError [get, set]
 Whether verification RMS errors from convergence tavble are compared. More...
 
bool CompareByVerificationMaxError [get, set]
 Whether Maximal absolute verification errors from convergence tavble are compared. More...
 

Private Member Functions

int IComparer
< NeuralTrainingParameters >. 
Compare (NeuralTrainingParameters a, NeuralTrainingParameters b)
 

Detailed Description

Base comparer class (implementation of the IComparer{NeuralTrainingParameters} interface) for conmparing objects of type NeuralTrainingParameters

Member Function Documentation

double IG.Num.NeuralTrainingParameters.ComparerBase.OutputNorm ( IVector  vec)
inlineprotected
int IComparer<NeuralTrainingParameters>. IG.Num.NeuralTrainingParameters.ComparerBase.Compare ( NeuralTrainingParameters  a,
NeuralTrainingParameters  b 
)
inlineprivate

Member Data Documentation

IVector IG.Num.NeuralTrainingParameters.ComparerBase._outputScalingLengths
protected
bool IG.Num.NeuralTrainingParameters.ComparerBase._compareMinError = false
protected
int IG.Num.NeuralTrainingParameters.ComparerBase._numLastErrors = 1
protected
int IG.Num.NeuralTrainingParameters.ComparerBase._numBundles = 0
protected
bool IG.Num.NeuralTrainingParameters.ComparerBase._compareByTrainingRmsError = true
protected
bool IG.Num.NeuralTrainingParameters.ComparerBase._compareByTrainingMaxError = false
protected
bool IG.Num.NeuralTrainingParameters.ComparerBase._compareByVerificationRmsError = false
protected
bool IG.Num.NeuralTrainingParameters.ComparerBase._compareByVerificationMaxError = false
protected

Property Documentation

IVector IG.Num.NeuralTrainingParameters.ComparerBase.OutputScalingLengths
getset

Vector of scaling lengths for calculation of weighted norms.

bool IG.Num.NeuralTrainingParameters.ComparerBase.CompareMinError
getset

Whether the min error in convergence table is used for comparison when errors are compared. If false then mean value of last errors is used.

int IG.Num.NeuralTrainingParameters.ComparerBase.NumLastErrors
getset

Number of last errors in convergence list for calculataing the mean value of error. The default valeu is 1 which represent the last error in the converhence list.

Referenced by IG.Script.LoadableScriptShellNeuralIT.PlotConvergence().

int IG.Num.NeuralTrainingParameters.ComparerBase.NumBundles
getset

Number of bundles where sorting of convergences stars. The default valeu is 0 which represent normal sorting after the training is done.

bool IG.Num.NeuralTrainingParameters.ComparerBase.CompareByTrainingRmsError
getset

Whether training RMS errors from convergence tavble are compared.

Referenced by IG.Num.TestTrainingParametersComparers.Test().

bool IG.Num.NeuralTrainingParameters.ComparerBase.CompareByTrainingMaxError
getset

Whether Maximal absolute training errors from convergence tavble are compared.

bool IG.Num.NeuralTrainingParameters.ComparerBase.CompareByVerificationRmsError
getset

Whether verification RMS errors from convergence tavble are compared.

bool IG.Num.NeuralTrainingParameters.ComparerBase.CompareByVerificationMaxError
getset

Whether Maximal absolute verification errors from convergence tavble are compared.


The documentation for this class was generated from the following file: