Airy(double x) | Meta.Numerics.Functions.AdvancedMath | inlinestatic |
Airy_Series(double x) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
AiryAi(double x) | Meta.Numerics.Functions.AdvancedMath | inlinestatic |
AiryAi_Series(double x) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
AiryBi(double x) | Meta.Numerics.Functions.AdvancedMath | inlinestatic |
AiryBi_Series(double x) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
Bessel(double nu, double x) | Meta.Numerics.Functions.AdvancedMath | inlinestatic |
Bessel_Asymptotic(double nu, double x) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
Bessel_CF1(double nu, double x, out int sign) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
Bessel_CF2(double nu, double x) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
Bessel_RecurrUpward(double nu, double x, ref double F, ref double FP, int n) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
Bessel_Steed(double nu, double x) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
Bessel_Steed(double r, Complex z, double W, int sign) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
BesselJ(int n, double x) | Meta.Numerics.Functions.AdvancedMath | inlinestatic |
BesselJ(double nu, double x) | Meta.Numerics.Functions.AdvancedMath | inlinestatic |
BesselJ_Series(int n, double x) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
BesselJ_Series(double nu, double x) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
BesselJ_Series(double nu, double x, out double J, out double JP) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
BesselY(int n, double x) | Meta.Numerics.Functions.AdvancedMath | inlinestatic |
BesselY(double nu, double x) | Meta.Numerics.Functions.AdvancedMath | inlinestatic |
BesselY_Series(double x, out double Y0, out double Y1) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
BesselY_Series(double nu, double x, out double Y0, out double Y1) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
Beta(double a, double b) | Meta.Numerics.Functions.AdvancedMath | inlinestatic |
Beta(double a, double b, double x) | Meta.Numerics.Functions.AdvancedMath | inlinestatic |
C(x).</returns >< remarks >< para >The Fresnel cosine integral is defined as | Meta.Numerics.Functions.AdvancedMath | inlineprivate |
c4 | Meta.Numerics.Functions.AdvancedMath | privatestatic |
CarlsonD(double x, double y, double z) | Meta.Numerics.Functions.AdvancedMath | inlinestatic |
CarlsonF(double x, double y, double z) | Meta.Numerics.Functions.AdvancedMath | inlinestatic |
Catalan | Meta.Numerics.Functions.AdvancedMath | |
Clausen(double t) | Meta.Numerics.Functions.AdvancedMath | inlinestatic |
ClausenNearPi(double t) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
ClausenNearZero(double t) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
Compute_Dawson_Rybicki_Coefficients(double h, int n) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
ComputeBorweinEtaCoefficients(int n) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
ComputeCotDerivative(int n) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
ComputeInverseErfSeriesCoefficients(int n) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
Coulomb_Asymptotic(double L, double eta, double rho, out double F, out double G) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
Coulomb_CF1(double L, double eta, double rho, out int sign) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
Coulomb_CF2(double L, double eta, double rho) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
Coulomb_Recurse_Upward(int L1, int L2, double eta, double rho, ref double U, ref double UP) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
Coulomb_Steed(double L, double eta, double rho) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
Coulomb_Zero_Series(double eta, double rho, out double F, out double FP, out double G, out double GP) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
CoulombF(int L, double eta, double rho) | Meta.Numerics.Functions.AdvancedMath | inlinestatic |
CoulombF_Integrate(int L, double eta, double rho) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
CoulombF_Series(int L, double eta, double rho, out double F, out double FP) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
CoulombFactor(int L, double eta) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
CoulombFactorZero(double eta) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
CoulombG(int L, double eta, double rho) | Meta.Numerics.Functions.AdvancedMath | inlinestatic |
CoulombTurningPoint(double L, double eta) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
Dawson_Asymptotic(double x) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
Dawson_Rybicki(double x) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
Dawson_Rybicki_coefficients | Meta.Numerics.Functions.AdvancedMath | privatestatic |
Dawson_Rybicki_h | Meta.Numerics.Functions.AdvancedMath | private |
Dawson_Series(double x) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
DiLog(double x) | Meta.Numerics.Functions.AdvancedMath | inlinestatic |
DiLog_Series(double x) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
DirichletEta(double x) | Meta.Numerics.Functions.AdvancedMath | inlinestatic |
DirichletEta_Borwein(double x) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
DirichletEta_BorweinCoefficients | Meta.Numerics.Functions.AdvancedMath | privatestatic |
dmax | Meta.Numerics.Functions.AdvancedMath | privatestatic |
dPI2 | Meta.Numerics.Functions.AdvancedMath | privatestatic |
EI | Meta.Numerics.Functions.AdvancedMath | private |
Elliptic_AGM(double k) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
EllipticE(double k) | Meta.Numerics.Functions.AdvancedMath | inlinestatic |
EllipticE(double phi, double k) | Meta.Numerics.Functions.AdvancedMath | inlinestatic |
EllipticE_Asymptotic(double k1) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
EllipticE_Series(double k) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
EllipticF(double phi, double k) | Meta.Numerics.Functions.AdvancedMath | inlinestatic |
EllipticK(double k) | Meta.Numerics.Functions.AdvancedMath | inlinestatic |
EllipticK_Asymptotic(double k1) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
EllipticK_Series(double k) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
Erf(double x) | Meta.Numerics.Functions.AdvancedMath | inlinestatic |
Erf_Series(double x) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
Erfc(double x) | Meta.Numerics.Functions.AdvancedMath | inlinestatic |
Erfc_ContinuedFraction(double x) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
EulerGamma | Meta.Numerics.Functions.AdvancedMath | |
EvaluateCotDerivative(double[] p, double x) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
F(x).</returns >< remarks >< para >The Dawson function is defined by the integral | Meta.Numerics.Functions.AdvancedMath | inlineprivate |
Gamma(double x) | Meta.Numerics.Functions.AdvancedMath | inlinestatic |
Gamma(double a, double x) | Meta.Numerics.Functions.AdvancedMath | inlinestatic |
Gamma_Temme(double a, double x, out double P, out double Q) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
GammaP_Series(double a, double x) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
GammaQ_ContinuedFraction(double a, double x) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
GoldenRatio | Meta.Numerics.Functions.AdvancedMath | static |
IntegralCi(double x) | Meta.Numerics.Functions.AdvancedMath | inlinestatic |
IntegralCi_Series(double x) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
IntegralE(int n, double x) | Meta.Numerics.Functions.AdvancedMath | inlinestatic |
IntegralE1_Imaginary_ContinuedFraction(double x) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
IntegralE_ContinuedFraction(int n, double x) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
IntegralE_Series(int n, double x) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
IntegralEi(double x) | Meta.Numerics.Functions.AdvancedMath | inlinestatic |
IntegralEi_Asymptotic(double x) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
IntegralEi_Series(double x) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
IntegralSi(double x) | Meta.Numerics.Functions.AdvancedMath | inlinestatic |
IntegralSi_Series(double x) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
IntegralTi(double x) | Meta.Numerics.Functions.AdvancedMath | inlinestatic |
IntegralTi_LogSeries(double x) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
IntegralTi_Series(double x) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
inverfSeriesCoefficients | Meta.Numerics.Functions.AdvancedMath | privatestatic |
InverseErf(double y) | Meta.Numerics.Functions.AdvancedMath | inlinestatic |
InverseErfc(double y) | Meta.Numerics.Functions.AdvancedMath | inlinestatic |
InverseErfcAsymptoticExpansion(double x) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
InverseErfcByRefinement(double y) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
InverseErfcRationalApproximation(double x) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
InverseErfSeries(double x) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
Lambert_Halley(double x, double w0) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
Lambert_SeriesLarge(double x) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
Lambert_SeriesSmall(double x) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
Lambert_SeriesZero(double x) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
LambertW(double x) | Meta.Numerics.Functions.AdvancedMath | inlinestatic |
LeftRegularizedBeta(double a, double b, double x) | Meta.Numerics.Functions.AdvancedMath | inlinestatic |
LeftRegularizedGamma(double a, double x) | Meta.Numerics.Functions.AdvancedMath | inlinestatic |
LogBeta(double a, double b) | Meta.Numerics.Functions.AdvancedMath | inlinestatic |
LogGamma(double x) | Meta.Numerics.Functions.AdvancedMath | inlinestatic |
ModifiedBessel(double nu, double x) | Meta.Numerics.Functions.AdvancedMath | inlinestatic |
ModifiedBessel_Asymptotic(double nu, double x, out double sI, out double sIP, out double sK, out double sKP) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
ModifiedBessel_CF1(double nu, double x) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
ModifiedBessel_CF_K(double nu, double x, out double K, out double g) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
ModifiedBesselI(double nu, double x) | Meta.Numerics.Functions.AdvancedMath | inlinestatic |
ModifiedBesselI_Series(double nu, double x, out double I, out double IP) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
ModifiedBesselI_Series(double nu, double x) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
ModifiedBesselK(double nu, double x) | Meta.Numerics.Functions.AdvancedMath | inlinestatic |
ModifiedBesselK_RecurrUpward(double mu, double x, ref double K, ref double KP, int n) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
ModifiedBesselK_Series(double nu, double x, out double K0, out double K1) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
PolyLog(int n, double x) | Meta.Numerics.Functions.AdvancedMath | inlinestatic |
PolyLog_BernoulliSum(int n, double w) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
PolyLog_LogSeries(int n, double x) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
PolyLog_Series(int n, double x) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
PowOverBeta(double a, double b, double x) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
Psi(double x) | Meta.Numerics.Functions.AdvancedMath | inlinestatic |
Psi(int n, double x) | Meta.Numerics.Functions.AdvancedMath | inlinestatic |
RiemannZeta(double x) | Meta.Numerics.Functions.AdvancedMath | inlinestatic |
RiemannZeta_LaurentSeries(double x) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
RightRegularizedGamma(double a, double x) | Meta.Numerics.Functions.AdvancedMath | inlinestatic |
S(x).</returns >< remarks >< para >The Fresnel sine integral is defined as | Meta.Numerics.Functions.AdvancedMath | inlineprivate |
SphericalBesselJ(int n, double x) | Meta.Numerics.Functions.AdvancedMath | inlinestatic |
SphericalBesselJ_Miller(int n, double x) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
SphericalBesselJ_One(double x) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
SphericalBesselJ_Series(int n, double x) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
SphericalBesselJ_SeriesOne(double x) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
SphericalBesselJ_Zero(double x) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
SphericalBesselY(int n, double x) | Meta.Numerics.Functions.AdvancedMath | inlinestatic |
SphericalBesselY_One(double x) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
SphericalBesselY_Series(int n, double x) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
SphericalBesselY_SeriesOne(double x) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
SphericalBesselY_Zero(double x) | Meta.Numerics.Functions.AdvancedMath | inlineprivatestatic |
SphericalHarmonic(int l, int m, double theta, double phi) | Meta.Numerics.Functions.AdvancedMath | inlinestatic |
SqrtAccuracy | Meta.Numerics.Functions.AdvancedMath | privatestatic |
TemmeD | Meta.Numerics.Functions.AdvancedMath | privatestatic |