LINIJSKO KODIRANJE – HDB3
Podatki znotraj elektronskih sistemov se navadno oblikujejo unipolarno in v dvojiškem načinu. Uporablja se dva simbola. Znak (mark), ki je napetostni/tokovni pulz v nekem časovnem trajanju in presledek (space),ki je breznapetosni/breztokovni časovni interval.
 Znotraj sistemov se podatke prenaša z vzporednim ali zaporednim načinom, Na razdalje, torej po linijah, pa se prenaša večinoma zaporedno/serijsko. Pred linijskem prenosom signale preoblikujemo.

Na razdalje praviloma ni omogočen prenos enosmerne komponente, zato je prva naloga linijskega preoblikovanja/kodiranja, izločitev enosmerne komponente iz vsebine oddajnega signala. Sprejemnik, naj bi iz sprejetega signala poleg informacije pridobil tudi sinhronizem, torej takt prenosa. Druga naloga linijskega kodiranja je torej v oddajni signal vtisniti informacijo o taktu.
Za obravnavan kodirnik (HDB3) sta ti dve zahtevi podani na sledeč način. Vhodni podatki v kodirnik so poljubno zaporedje znakovnih ali prekinitvenih simbolov, ki

jih logično opredelimo kot sekvenco ničel oziroma enic. Neugodna so sosledja enic ali ničel, ki ne nudijo dovolj informacij za vzpostavitev takta v sprejemniku. Enosmerne komponente se izognemo z alterniranjem napetosti znakovnega simbola, ki da v povprečju nično enosmerno komponento. Predolgo zaporedje enic pri alterniranju ni problematično. Neugodnih preveč zaporednih ničel, pa nadomestimo z vrivanjem posebnih kombinacij, ki so na sprejemu zaznane in izločene.
Alternacija enic pomeni uvedbo treh simbolnih vrednosti, to pa pomeni večjo informacijsko zalogo vira.
Zgled:
Predpostavljamo, da je v informacijskem toku pogostost ničel in enic enaka. Pozitivnih enic je toliko kot negativnih. Verjetnost pozitivnih enic je p1 = 1/4 in prav tako tudi negativnih enic p2. Ničle se pojavljajo z verjetnostjo p3 = 1/2. Entropija izvora, informacijska izdatnost je:

 H = p1log2(1/p1)+p2log2(1/p2)+p3log2(1/p3) = 1,5
Izračun pokaže, da pripada vsakemu simbolu 1,5 bita informacije. Redundance je torej 0,5 bita na simbol. Izkoristimo jo na sledeč način. Vsake štiri zaporedne ničle nadomestimo z vzorcem, ki dopolni število enic od zadnjega nadomeščanja/vrivanja na sodo število. S tem dosežemo izničenje morebitne enosmerne komponente. Nadomestni vzorec vsili enico s polariteto predhodne enice, kar je sprejemniku informacija, da je prisoten vrinjen vzorec. Uporabimo štiri različne vzorce, ki jih izberemo glede na število oddanih enic po zadnjem vrivanju ter polaritete zadnje enice.

preglednica vzorcev je:
__
| število enic od | polariteta predhodne | vrinjeni vzorec |
| zadnjega vrivanja | enice | h3 , h2 , h1 , h0 |

 sodo pozitivna negativna ničla ničla negativna

 liho pozitivna ničla ničla ničla pozitivna

 liho negativna ničla ničla ničla negativna

 sodo negativna pozitivna ničla ničla pozitivna
--
Oddajni postopek mora imeti nadzor nad štirimi biti še pred oddajo na linijo. Če postopek uvajamo namesto z Moorovim z Mealeyevim avtomatom , potrebujemo pregled le nad tremi biti. Podatke bo kodirnik pomikal preko štirih zaporedno povezanih pomnilnih celic k izhodu. Vseboval bo štiricelični pomikalni register. V oddaji bosta prisotna dva postopka. En je postopek vrivanja nadomestnega vzorca ob prisotnosti štirih ničel, drugi je običajni postopek pomikanja podatkov proti izhodu kodirnika.

Celice pomikalnega registra poimenujemo h3, h2, h1, h0. Podatke data pridobljene iz podatkovnega vira , dobimo v obliki enic 1 ali ničel 0. Na začetku kodirnega postopka jih bomo preoblikovali v alternirajoče veličine. Pozitivni pulz bo imenovan poz, negativni pulz z imenom neg in ničlo z imenom brez. V postopku kodiranja bomo vodili/pomnili polariteto zadnje oddane enice tako, da bomo s spremenljivko pol določili polariteto enice, ki bo naslednja oddana. V postopku vrivanja je potreben podatek o številu oddanih enic od zadnjega vrivanja. S spremenljivko za nadzor parnosti par sproti nadzorujemo sodo ali liho število oddanih enic. Uporabili bomo imeni sodo za eno konstanto in liho za drugo. Izhodna spremenljivka kodirnika je imenovana izhod. Zavzema eno od teh vrednosti. poz = +1, neg = -1, brez =0. Izhod je vhodni podatek za postopek upodabljanja podatkovne sekvence. Uporabili bomo vgrajene vektorske funkcije DERIVE-a. Vsak izhodni simbol bomo v posebnem postopku razgradili v sosledje točk in jih nanizali v niz, ki bo predstavljal graf/oscilogram kodiranega vhodnega podatka. V tem postopku bo uporabljena in krmiljena časovna spremenljivka "t". Preprosta bločna skica kodirnika je:
[image: image2.png]DATA()

daten

pomik
A A A
S Sife\ | [over [ypor-jwneg SIMBOL()
A4 A A 4 A4 A 4 A
wody |
pav| lpol| [Wo | | Mal [We| |y B NVode
y 7 X y Y Y
Snclo/L\m V\oz./ wes t
A 4 vy
vriv

>\fod\

Oscilogram, ki je končni izid programiranja linijskega kodirnika je skupek točk, nanizan v vektorju Vod. V vektor vrivamo točke zaporedoma, kot tečejo prihajajoči podatki v kodirnik. Ta jih preoblikuje v spremenljivko izhod, ki je vhodni podatek za program/funkcijo SIGNAL(izhod). Pred pričetkom izdelave tega programa moramo deklarirati vektor Vod:= [[t,izhod]]. Vektor s še nedefiniranimi komponentami je deklariran z oglatima oklepajema []. Napolnili ga bomo z uvodno točko [t,izhod], kot jo moramo določiti v DERIVE-u. Vsaka od naslednjih točk bo imela nek kasnejši čas t in vrednost ustrezno izhodni spremenljivki kodirnika. Pred izdelavo posameznih programov moramo tako kot smo deklarirali Vod opredeliti tudi druge spremenljivke in konstante.
To bomo dosegli z uvodnim programom POSTAVI(). Izdelali ga bomo kot funkcijo v programu DERIVE. Deklariramo štiri celice pomikalnega registra h0 do h3 in jih napolnimo z začetno vsebino. Vse celice vsebujejo simbole brez, ki imajo velikost 0. Deklariramo spremenljivko izhod. Konstantama neg in poz dodelimo vrednosti -1 in 1. Spremenljivki pol dodelimo velikost preko funkcijskega argumenta vh1. Prave vrednosti so poz, neg ali 1 ali -1. Konstantama sodo/liho smo izbrali vrednosti sodo je 0 in liho je 1. Začetna parnost je postavljena na sodo. Čas je postavljen na začetno vrednost t = 0. Sledi deklariranje Vod.
V DERIVE-u funkcijo tvorimo tako, da jo poimenujemo, v oklepajih navedemo argumente, s katerimi vplivamo na izvedbo. V našem primeru vplivamo le na postavitev začetne polaritete signala na izhodu iz postopka. Sledi operator := in za njem stavki programa, ki jih ločujemo z vejicami. Kjer je stavkov več, jih povežemo v blok s krmilnim ukazom prog in oklenemo z oklepajema. Ob pravilnem vnosu, se bodo funkcije prikazale v strukturnem zapisu
POSTAVI(vh1) :=

Prog

brez := 0
h0 := brez
h1 := brez
h2 := brez
h3 := brez
izhod

#8:
neg := -1

poz := 1

pol := vh1

soda := 0
1 i ha := 1

par := soda

t := 0
Vod = [[t, izhod]]

Za vir podatkov DATA() je izbran generator naključne vrednosti. Z argumentom velikosti 2, ga nastavimo, da generira števila med nič in manj kot 2, torej generira le 0 in 1.

#9: DATA(vh2):= RANDOM(vh2)

 #10: DATA(2)

Vhodna spremenljivka data je s tem pripravljena
#11: data:= DATA(2)

Omenjeni program za oblikovanje simbolov v oscilogramu je:

 SIMBOL (izhod) :=

 Prog

#12 Vod := INSERT ([t ,izhod], Vod)

 t:=t+1

 Vod := INSERT ([t ,izhod], Vod)

Program vzame izhodno vrednost kodirnika in jo vrine s trenutnim časom t v vektor Vod. Nato poveča čas za enoto in vrine drugo točko v vektor Vod. Simbol je oblikovan kot pravokotni pulz. Če bi bil drugače oblikovan, bi ga morali ustvariti z drugačno funkcijo.
Spremenljivko izhod dobimo v kodirnem postopku, ki ga izvaja program/funkcija KOD(). V njem bosta izvajani dve proceduri. Procedura pomika in procedura vrivanja. Potek je naslednji. Iz zadnje celice pomikalnega registra prenesemo podatek na izhod kodirnika. Nato gledamo vsebino novega podatka data. Če je nič in so ob tem nič tudi celice h0 do h2, je prisoten pogoj za vrivanje vzorca vriv namesto samih (štirih) ničel. Če ni, se izvede pomik.
Deklariramo proceduri:
#13: pomik(pol) :=
#14: vriv(par, pol) :=
Kodirni program za HDB3 kodirnik je:

KOD(data) :=

Prog

izhod := h3

#15:
If data = 0 Λ h0 = brez Λ h1 = brez Λ h2 = brez

vriv ()

pomik ()

izhod

Procedura vrivanja upošteva zgodovino delovanja kodirnika. Ta je razvidna iz dveh spremenljivk in sicer iz polaritete naslednje enice Pol ter iz števila oddanih enic Par. Glede na kombinacijo teh spremenljivk se izbere enega med štirimi vnosi
	 #16:
	vnos1:= [h0 := neg, h3 := neg, pol := poz]

	 #17:
	vnos2 := [h0 := poz, h3 := brez, pol := neg, par := soda]

	 #18:
	vnos3 := [h0 := poz, h3 := poz, pol := neg]

	 #19:
	vnos4 := [h0 := neg, h3 := brez, pol := poz, par := soda]

Najprej gledamo polariteto. Če je negativna , gledamo parnost in pri sodem številu oddanih enic, vrinemo vnos1. Če ni soda vrinemo vnos2. Če polariteta ni negativna, je pozitivna. Pri pozitivni polariteti glede na parnost izvedemo vnos3 oziroma vnos4
 vriv(pol, par) :=

 Prog

 If pol = neg

If par = soda

#20: vnos1

 vnos2

If par = soda

vnos3

vnos4

Procedura pomikanja podatkov vzdolž celic h0 do h3, se izvaja v več korakih. Najprej iz celice h2 postavimo podatek v h3, nato iz h1 v h2, in nazadnje iz h0 v h1. Sedaj je celica h0 pripravljena za sprejem novega podatka. Če je podatek enica, se bo glede na predhodno polariteto enice, vpisala enica z nasprotno polariteto, torej polariteto, ki je že prisotna. Obenem se bo stanje spremenljivke pol spremenilo. Tudi parnost se bo spremenila. Če je podatek data enak 0, se bo v celico h0 vpisala konstanta brez.

Spremenljivkama pol in par menjamo vrednosti na enak način in sicer s prireditvijo nove vrednosti glede na predhodno vrednost. Tvorimo funkciji/preslikavi Spol in Spar
#21: Spol := If(pol = poz, pol := neg, pol := poz)

 #22: Spar := If(par = soda, par := liha, par := soda)

pomik(data) :=

 Prog

h3 := h2

h2 := h1
 h1 := h0
 If data = 1

#23: Prog

h0 := pol
Spar
Spol

h0 := brez

 h0
V tej fazi izdelave imamo pripravljene vse elemente, ki jih potrebujemo za upodabljanje oscilograma. Sestavimo program, ki bo psevdonaključen podatek data zapisovall v vektor Vod. Koliko bo zapisov, določa parameter k . To bo prvi argument funkcije ZAP(k,z). Drugi argument z določa začetno polariteto, torej polariteto prve enice v zapisu.
Potek programa kaže diagram.

[image: image1]
 Program pa deluje takole:

Najprej postavi vse elemente kodirnika. Nato postavi indeks n teka zančnega programa, ki v svojem teku najprej izračuna vhodni podatek data, gleda, če je že izvedel dovoljšnje število zank (n > k). Če jih ni, izvede kodirni postopek KOD(data). Izid kodiranja je izhod, ki ga naslednji del programa pretvori v obliko za zapis v Vod in ga zapiše vanj. Poveča indeks n za eno in se vrne na začetek zanke. Nato se postopek ponavlja do prekoračenja indeksa n glede na vhodni argument k. Ob tem prekoračenju se izvede povratek iz programa, ki vrne vsebino vektorja Vod.

Simbolni zapis programa je precej kratek.
ZAP(k, z) :=

Prog

POSTAVI (z)
n := 24: n:=0
Loop

data := RANDOM(2)
 If n > k

 RETURN Vod
 KOD(data)
SIMBOL(izhod) n:=n+1
Če ga zapišemo z razširjeno obliko, bo zapis daljši in podrobnejši. Da program ne pišemo vrstico za vrstico, ga lahko pišemo z oštevilčenjem izrazov. Na primer POSTAVI(vh1) kar z #8 in tako naprej.
 ZAP(k,z):=
 Prog

 POSTAVI(z)

Prog

 brez:=0
h0 := brez
h1 := brez
h2 := brez
 h3 := brez

 izhod :=

neg := -1
poz := 1

pol := z
soda := 0

liha := 1

par := soda

t := 0
Vod = [[t, izhod]]

n := 0
Loop

data := RANDOM(2)

If n > k

RETURN Vod

Prog

KOD(data) .​

Prog

izhod := h3

If data = 0 Λ h0 = brez Λ h1 = brez Λ h2 = brez

#25:
vriv(pol, par) :=

Prog

 If pol = neg

 If par = soda
 vnos1:= [h0 := neg, h3 := neg, pol := poz​]
 vnos2:= [h0 := paz, h3 := brez, pol := neg​]
 If par = soda

 vnos3:= [h0 := poz, h3 := poz, pol := neg​]
 vnos4:= [h0 := neg, h3 := brez, pol := po​z]

pomik(data) :=

Prog

h3 := h2
h2 := h1
h1 := h0
If data = 1

Prog

h0 := pol

spol := If(pol = poz, pol := neg, pol := poz​)

spar := If (par = soda, par := liha, par :=soda​)
h0 := brez

h0
izhod

SIMBOL (izhod) :=

Prog

Vod := INSERT([t, izhod], Vod)
 t:=t+1
Vod := INSERT([t, izhod], Vod)

n := n + 1

n > k

POSTAVI

 ZAP()

RETURN

Vod

N : = 0

RANDOM

KOD ()

SIGNAL

 n : = n+1

