Domov

Vectors in three dimensions

  1. A B C D E F G H a b c
    The diagram shows a cube ABCDEFGH. Write the following vectors in terms of vectors a=AB, b=BC and c=CG:

    (a)   AG

    (b)   AH

    (c)   CE

    (d)   GD

    Solutions:    (a)  AG=a+b+c;     (b)  AH=b+c;     (c)  CE=ab+c;     (d)  GD=ac
  2. x y z A B C D E F G H
    The points A(0,0,0), B(3,0,0), D(0,7,0) and E(0,0,5) are vertices of the cuboid ABCDEFGH. Express the following vectors in terms of the standard basis vectors i, j and k:

    (a)   AC

    (b)   AG

    (c)   EC

    (d)   HB

    Solutions:    (a)  AC=3i+7j;     (b)  AG=3i+7j+5k;     (c)  EC=3i+7j5k;     (d)  HB=3i7j5k
  3. Vectors have the coordinates:  a=(412),    b=(351),    c=(623).
    Calculate vectors:

    (a)   u=a+b+c

    (b)   v=abc

    (c)   w=2a+3bc

    Solutions:    (a)  u=(1380);     (b)  v=(564);     (c)  w=(111510)
  4. Let  a=8i+7j+4k  and  b=5i+j+6k.
    Calculate:

    (a)   a+b

    (b)   ab

    (c)   |ab|

    Solutions:    (a)  a+b=13i+8j+10k;     (b)  ab=3i+6j2k;     (c)  |ab|=7
  5. Let  a=ijk,    b=jik  and  c=kj.
    Calculate:

    (a)   a+b+c

    (b)   b2ac

    Solutions:    (a)  a+b+c=jk;     (b)  b2ac=3i+4j
  6. Given vector  a=(1289)

    (a)   find |a|,

    (b)   find the unit vector u which has the same direction as a.

    Solutions:    (a)  |a|=17;     (b)  u=(1217817917)
  7. Let  a=4i+j8k. Find the unit vector in the direction of the vector a.
    Solutions:    u=49i+19j89k
  8. Points P and Q have the position vectors OP=5ij+2k and OQ=7i+5jk.

    (a)   Write down vector PQ.

    (b)   Find |PQ|.

    Solutions:    (a)  PQ=2i+6j3k;     (b)  |PQ|=7
  9. Points B(5,2,3), C(7,6,2) and D(1,8,1) are three of the vertices of the parallelogram ABCD.

    (a)   Find the coordinates of the point A.

    (b)   Find the coordinates of the intersection point of the diagonals.

    Solutions:    (a)  A(1,4,2);     (b)  P(3,5,2)
  10. Points A(2,1,1) and D(1,3,2) are two of the vertices of the parallelogram ABCD. Diagonals of this parallelogram intersect at P(7,1,3). Find the coordinates of points B and C.
    Solutions:    B(13,5,4), C(16,3,5)
  11. Let v=(648).   Find out which of the following vectors are parallel to v:

    a=(12816),    b=(241630),    c=(9612)

    Solutions:    a is parallel to v,     b is not parallel to v,     c is parallel to v
  12. Let v=(575),    a=(102),    b=(210),    c=(031).

    Express vector v in terms of a, b and c.

    Solutions:    v=a+2b3c
  13. Let a=(125),    b=(713),    c=(260),    d=(487).

    Express vector d in terms of a, b and c.

    Solutions:    d=2ab+12c
  14. Let a=(113),    b=(022),    c=(3713).

    Express vector c in terms of a and b if possible.

    Solutions:    It is possible: c=3a+2b
  15. Let a=(213),    b=(131),    c=(312).

    Express vector c in terms of a and b if possible.

    Solutions:    It is not possible.
  16. Line segment AB has the endpoints A(1,3,2) and B(14,12,1). Find the coordinates of the points P and Q which divide AB in three equal parts.
    Solutions:    P(4,6,1), Q(9,9,0)
  17. Points U(3,5,2) and V(8,5,8) are the endpoints of the line segment UV. Points E, F, G and H divide UV in five equal parts. Find the coordinates of the points E, F, G and H.
    Solutions:    E(4,3,0), F(5,1,2), G(6,1,4), H(7,3,6)
  18. Points A(3,2,1) and B(17,5,6) are the endpoints of the line segment AB and P is the point on AB such that AP:PB=3:4. Find the coordinates of the point P.
    Solutions:    P(9,1,2)
  19. Vector a=(92z) has the modulus |a|=11. Find the unknown coordinate z. Write down all possible solutions.
    Solutions:    z1=6, z2=6
  20. Vector v=i+mj+2mk has the modulus |v|=9. Find the value of m. Write down all possible solutions.
    Solutions:    m1=4, m2=4

Powered by MathJax
Index

 Index