Domov

Trigonometry

  1. Draw the graph of the function f(x)=sinx and determine the following properties:

    (a)   find the minimum value and the maximum value,

    (b)   find the period.

    Solutions:    (a)  min. value: 1, max. value: 1;     (b)  period: 2π
  2. Draw the graph of the function f(x)=2cosx+1 and determine the following properties:

    (a)   find the minimum value and the maximum value,

    (b)   find the period.

    Solutions:    (a)  min. value: 1, max. value: 3;     (b)  period: 2π
  3. Draw the graph of the function f(x)=sin2x+3 and determine the following properties:

    (a)   find the domain and range,

    (b)   find the period,

    (c)   write down minima and maxima.

    Solutions:    (a)  domain: R, range: [2,4];     (b)  period: π;     (c)  min.: (π4+kπ,2), max.:(π4+kπ,4),  kZ
  4. Draw the graph of the function f(x)=sin3x and determine the following properties:

    (a)   find x-intercepts,

    (b)   find the period,

    (c)   write down minima and maxima.

    Solutions:    (a)  x-intercepts: kπ3,  kZ;     (b)  period: 2π3;     (c)  min.: (π6+2kπ3,1), max.:(π6+2kπ3,1),  kZ
  5. Draw the graph of the function f(x)=cos3x and determine the following properties:

    (a)   find all x-intercepts on [0,2π],

    (b)   write down minima and maxima on [0,2π].

    Solutions:    (a)  x-intercepts: π6, π2, 5π6, 7π6, 3π2, 11π6;     (b)  min.: (π3,1), (π,1), (5π3,1), max.:(0,1), (2π3,1), (4π3,1), (2π,1)
  6. Draw the graph of the function f(x)=4cos(xπ6) and determine the following properties:

    (a)   find y-intercept,

    (b)   find all x-intercepts on [0,2π],

    (c)   write down the greatest and the least value, and state the smallest non-negative value of x for which they occur.

    Solutions:    (a)  y-intercept: 23;     (b)  x-intercepts: 2π3, 5π3;     (c)  min. value 4 occurs at x=7π6, max. value 4 occurs at x=π6
  7. Draw the graph of the function f(x)=tanx and determine the following properties:

    (a)   find x-intercepts,

    (b)   find the vertical asymptotes.

    Solutions:    (a)  x-intercepts: x=kπ,  kZ;     (b)  vertical asymptotes: x=π2+kπ,  kZ
  8. Draw the graph of the function f(x)=tanx2 and determine the following properties:

    (a)   find x-intercepts,

    (b)   find the vertical asymptotes.

    Solutions:    (a)  x-intercepts: x=2kπ,  kZ;     (b)  vertical asymptotes: x=π+2kπ,  kZ
  9. Draw the graphs of the following functions:

    (a)   y=|sinx|

    (b)   y=|2cosx+1|

  10. Draw the graphs of the following functions:

    (a)   y=sin|x|

    (b)   y=tan|x|

  11. Use your GDC to draw the graph of the function y=log2(sinx+1) and then:

    (a)   find x-intercepts,

    (b)   find the vertical asymptotes,

    (c)   find minima and maxima.

    Solutions:    (a)  x-intercepts: x=kπ,  kZ;     (b)  vertical asymptotes: x=3π2+2kπ,  kZ;     (c)  maxima: (π2+2kπ,1),  kZ, minima don't exist
  12. Use your GDC to draw the graph of the function f(x)=sinx+3cosx. This function can be written in the form f(x)=Asin(x+B). Find the values of the constants A and B.
    Solutions:    A=2, B=π3;     f(x)=2sin(x+π3)
  13. Use your GDC to draw the graph of the function f(x)=sin2x. Then write this function in the form f(x)=AcosBx+C. (Hint: Use the GDC to test your solution.)
    Solutions:    f(x)=12cos2x+12
  14. Calculate the values of the following trigonometric functions. Your results should be exact.

    (a)   sin120

    (b)   cos135

    (c)   tan150

    Solutions:    (a)  =32;     (b)  =22;     (c)  =33
  15. Calculate the exact values of the following trigonometric functions:

    (a)   cos210

    (b)   tan225

    (c)   sin330

    Solutions:    (a)  =32;     (b)  =1;     (c)  =12
  16. Calculate the exact values of the following trigonometric functions:

    (a)   sin405

    (b)   tan480

    (c)   cos540

    (d)   sin1290

    Solutions:    (a)  =22;     (b)  =3;     (c)  =1;     (d)  =12
  17. Calculate the exact values of the following trigonometric functions:

    (a)   sin(60)

    (b)   tan(135)

    (c)   cos(270)

    Solutions:    (a)  =32;     (b)  =1;     (c)  =0
  18. Calculate the exact values of the following trigonometric functions:

    (a)   sin7π6

    (b)   tan11π3

    (c)   cos(7π)

    Solutions:    (a)  =12;     (b)  =3;     (c)  =1
  19. Express each of the following as trigonometric function of an acute angle:

    (a)   cos190

    (b)   sin500

    (c)   tan7π5

    Solutions:    (a)  =cos10;     (b)  =sin40;     (c)  =tan2π5=tan72
  20. Find sinα given that α is an acute angle and cosα=35.
    (Note: Use the standard trigonometric identities to find the exact result.)
    Solutions:    sinα=45
  21. Given that sinx=1517 and 90<x<180, find the exact values of:

    (a)   cosx

    (b)   tanx

    Solutions:    (a)  cosx=817;     (b)  tanx=158
  22. Given that cosx=23 and π<x<2π, find the exact values of:

    (a)   sinx

    (b)   tanx

    Solutions:    (a)  sinx=53;     (b)  tanx=52
  23. Given that tanx=22 and 0<x<π, find the exact values of:

    (a)   cosx

    (b)   sinx

    Solutions:    (a)  cosx=13;     (b)  sinx=223
  24. Simplify the following expressions using the standard trigonometric identities:

    (a)   1cos2xsinx

    (b)   (1sinxsinx)1cos2x

    (c)   (sinx1sinx)tanx

    Solutions:    (a)  =sinx;     (b)  =1sinx;     (c)  =cosx
  25. Simplify the following expressions:

    (a)   tan2xsin2x1sin2x1+tan2x

    (b)   1cosxcosxtanx+1sinx(tan2x+1)

    (c)   (tanx+1tanx1sinx)(1+cosx)

    Solutions:    (a)  =cos2x;     (b)  =1sinx;     (c)  =tanx
  26. Simplify the following expressions using the standard trigonometric identities and the double angles formulae:

    (a)   sin2x1sinxsinxcosx

    (b)   2tanxsin2x1cos2x

    (c)   1cos2xcos2x+sin2xtan2x

    (d)   tanx+sinxtanxsin2x(1cosx)

    Solutions:    (a)  =2cos2x;     (b)  =tanx;     (c)  =sin2x;     (d)  =12tanx
  27. Solve the following equations for 180x<180. Write the solutions in degrees.

    (a)   sinx=12

    (b)   sinx=22

    (c)   cosx=12

    (d)   cosx=0

    Solutions:    (a)  x1=30, x2=150;     (b)  x1=45, x2=135;     (c)  x1=60, x2=60;     (d)  x1=90, x2=90
  28. Solve the following equations for 0x<2π. Write the solutions in radians.

    (a)   sinx=12

    (b)   sinx=22

    (c)   cosx=22

    (d)   cosx=12

    Solutions:    (a)  x1=π6, x2=5π6;     (b)  x1=π4, x2=3π4;     (c)  x1=π4, x2=7π4;     (d)  x1=5π6, x2=7π6
  29. Find all possible solutions of the following equations. Write the solutions in radians.

    (a)   sinx=12

    (b)   sinx=1

    (c)   cosx=32

    (d)   cosx=12

    Solutions:    (a)  x1=π6+2kπ, x2=5π6+2kπ,  (kZ);     (b)  x1=π2+2kπ,  (kZ);     (c)  x1=±π6+2kπ,  (kZ);     (d)  x1=±2π3+2kπ,  (kZ)
  30. Find all possible solutions of the following equations. Write the solutions in radians.

    (a)   sin2x=12

    (b)   sin(x+π4)=22

    (c)   cos5x=32

    (d)   cos(3xπ6)=2

    Solutions:    (a)  x1=π12+kπ, x2=5π12+kπ,  (kZ);     (b)  x1=2kπ, x2=π2+2kπ,  (kZ);     (c)  x1=±π6+25kπ,  (kZ);     (d)  this equation has no solutions (cosine can't be greater than 1)
  31. Find all possible solutions of the following equations. Write the solutions in degrees.

    (a)   sin2x=12

    (b)   sin(5x+40)=32

    (c)   cos6x=1

    (d)   cos(x+25)=13

    Solutions:    (a)  x1=15+180k, x2=75+180k,  (kZ);     (b)  x1=4+72k, x2=16+72k,  (kZ);     (c)  x1=30+60k,  (kZ);     (d)  x14532+360k, x29532+360k,  (kZ)
  32. Find all solutions for x[0,360). Write the solutions in degrees and minutes.

    (a)   sin2x=12

    (b)   sin(3x1530)=0

    (c)   sin3x2=23

    Solutions:    (a)  x1=15, x2=75, x3=195, x4=255;     (b)  x1=510, x2=6510, x3=12510, x4=18510, x5=24510, x6=30510;     (c)  x12752, x2928, x326752, x43328
  33. Find all possible solutions of the following equations. Write the solutions in radians.

    (a)   tanx=1

    (b)   tanx=3

    (c)   tan2x=1

    (d)   tan2x=3

    Solutions:    (a)  x1=π4+kπ,  (kZ);     (b)  x1=π3+kπ,  (kZ);     (c)  x1=π8+12kπ,  (kZ);     (d)  x10.6245+kπ2,  (kZ)
  34. Find all possible solutions of the following equations. Write the solutions in degrees.

    (a)   tan(x+25)=33

    (b)   tan9x=0

    (c)   tan(2x72)=12

    Solutions:    (a)  x1=5+180k,  (kZ);     (b)  x1=20k,  (kZ);     (c)  x12243+90k,  (kZ)
  35. Find all solutions for x(180,180]. Write the solutions in degrees and minutes.

    (a)   tan(x15)=3

    (b)   tan3x2=3

    Solutions:    (a)  x1=75, x2=105;     (b)  x17217, x24743, x316743
  36. Find all solutions of the following equations:

    (a)   cos2x4cosx+3=0

    (b)   2sin2x11sinx=6

    (c)   2sin2x+3cosx=3

    Solutions:    (a)  x=2kπ  (kZ);     (b)  x1=π6+2kπ, x2=5π6+2kπ  (kZ);     (c)  x1=2kπ, x2=±π3+2kπ  (kZ)
  37. Find all solutions of the following equations:

    (a)   sin2x+2sinx=0

    (b)   tan2xtanx=0

    (c)   2sinxcosx2sinx+3cosx3=0

    Solutions:    (a)  x=kπ  (kZ);     (b)  x1=kπ, x2=π4+kπ  (kZ);     (c)  x1=2kπ, x2=π3+2kπ, x3=2π3+2kπ  (kZ)
  38. Find all solutions of the following equations:

    (a)   4sin2xcosx=8cosx7sin2x

    (b)   tanxcos2x52tanx=92tanxcosx

    Solutions:    (a)  x1=π2+kπ, x2=π6+2kπ, x2=5π6+2kπ  (kZ);     (b)  x1=kπ, x2=±π3+2kπ  (kZ)
  39. Find all solutions of the following equations:

    (a)   sinx+3cosx=0

    (b)   sin2x+sin2x3cos2x=0

    (c)   6sin2xsin2x2cos2x=1

    Solutions:    (a)  x1=π3+kπ  (kZ);     (b)  x1=π4+kπ, x2=arctan3+kπ  (kZ);     (c)  x1=π4+kπ, x2=arctan35+kπ  (kZ)

Powered by MathJax
Index

 Index