Domov

Trigonometry

  1. In the right-angled triangle ABC,   AC^B=90, AB^C=3725 and a=BC=14 cm.

    (a)   Find the lengths of the other two sides b=AC and c=AB.

    (b)   Calculate the perimeter P of the triangle.

    Solutions:    (a)  b10.7 cm, c17.6 cm;     (b)  P=a+b+c42.3 cm
  2. In the right-angled triangle ABC,   AC^B=90, AB^C=30 and a=BC=12 cm.

    (a)   Find the lengths of the other two sides b=AC and c=AB.

    (b)   Calculate the perimeter P of the triangle.

    Solutions:    (a)  b=43 cm, c=83 cm;     (b)  P=a+b+c=12+123 cm
  3. In the isosceles triangle ABC,   a=b=7 cm and α=BA^C=68.

    (a)   Find the length of the side c.

    (b)   Find the length of the height hc.

    Solutions:    (a)  c5.24 cm;     (b)  hc6.49 cm
  4. The isosceles triangle ABC (a=b) has the base c=AB=24 cm and the height hc=35 cm

    (a)   Find the perimeter of this triangle.

    (b)   Calculate the angles of this triangle. Write them in degrees and minutes.

    Solutions:    (a)  P=24+37+37=98 cm;     (b)  α=β715, γ3751
  5. The rectangle ABCD has the diagonal e=AC=20 cm. The angle between this diagonal and the side a=AB is CA^B=2745.

    (a)   Find the sides of this rectangle.

    (b)   Calculate the acute angle between the diagonals.

    Solutions:    (a)  a17.7 cm, b9.31 cm;     (b)  φ=5530
  6. The rectangle ABCD has the side a=AB=18 cm. The angle between the diagonal d=AC and the side a is CA^B=30. Find the side b=BC and the diagonal d=AC. Write your results in the exact form.
    Solutions:    b=63 cm, d=123 cm
  7. The diagonals of the rhombus ABCD have lengths e=AC=30 cm and f=BD=16 cm.

    (a)   Find the side a=AB.

    (b)   Calculate the angle α=DA^B.

    Solutions:    (a)  a=17 cm;     (b)  α569
  8. A regular pentagon ABCDE is inscribed in the circle with the radius r=10 cm. Find the side a=AB of this pentagon.
    Solutions:    a11.8 cm
  9. A regular hexagon ABCDEF has the side a=7 cm. Find the length of the diagonal d=AE.
    Solutions:    d=73 cm
  10. In the triangle ABC, α=CA^B=60, β=AB^C=45 and the height hc=43 cm. Find the lengths of the sides a, b and c. Write the exact values.
    Solutions:    a=46 cm, b=8 cm, c=(4+43) cm
  11. In the triangle ABC, b=AC=6 cm, c=AB=10 cm and α=CA^B=70. The height hc has the endpoints C and H.

    (a)   Find the height hc.

    (b)   Find the distances AH and HB.

    (c)   Hence, calculate the side a=BC.

    Solutions:    (a)  hc5.64 cm;     (b)  AH2.05 cm, HB7.95 cm;     (c)  a9.74 cm
  12. In the triangle ABC, b=AC=5 cm, c=AB=8 cm and α=CA^B=60. Find the length of the side a.
    Solutions:    a=7 cm
  13. In the triangle ABC, a=BC=13 cm, b=AC=19 cm and γ=AC^B=6430. Find the length of the side c.
    Solutions:    c17.8 cm
  14. In the triangle ABC, a=BC=9 cm, b=AC=14 cm and c=AB=13 cm. Calculate the angles α,β and γ. Round the results to the nearest minute.
    Solutions:    α3843, β7639, γ6437
  15. In the triangle ABC, a=BC=13 cm, b=AC=8 cm and c=AB=7 cm. Calculate the angles α,β and γ. Round the results to the nearest minute.
    Solutions:    α=120, β3212, γ2748
  16. In the triangle ABC, a=BC=2 cm, b=AC=7 cm and c=AB=33 cm. Calculate the angle β.
    Solutions:    β=150
  17. In the triangle ABC, a=23 cm, c=17 cm and β=107.

    (a)   Find the side b.

    (b)   Calculate the angles α and γ.

    Solutions:    (a)  b32.4 cm;     (b)  α4250, γ3010
  18. In the triangle ABC, α=30, β=71 and b=16 cm.

    (a)   Find the height hc.

    (b)   Calculate the side a.

    Solutions:    (a)  hc=8 cm;     (b)  a8.46 cm
  19. In the triangle ABC, α=57, β=71 and c=15 cm.

    (a)   Find the angle γ.

    (b)   Find the sides a and b.

    Solutions:    (a)  γ=52;     (b)  a16.0 cm, b18.0 cm
  20. In the triangle ABC, a=23 cm, b=39 cm and β=83.

    (a)   Find the angles α and γ.

    (b)   Find the side c.

    Solutions:    (a)  α3550, γ6110;     (b)  c34.4 cm
  21. In the triangle ABC, b=6 cm, c=8 cm and α=30.

    (a)   Find the height hc.

    (b)   Find the area A.

    Solutions:    (a)  hc=3 cm;     (b)  A=12 cm2
  22. In the triangle ABC, a=14 cm, c=11 cm and β=7733.

    (a)   Find the side b.

    (b)   Find the area A.

    Solutions:    (a)  b15.8 cm;     (b)  A75.2 cm2
  23. In the triangle ABC, a=5 cm, b=2 cm and γ=58. Find the area of this triangle.
    Solutions:    A4.24 cm2
  24. In the triangle ABC, a=7 cm, b=8 cm and c=5 cm.

    (a)   Find the angle α=CA^B.

    (b)   Find the area A.

    Solutions:    (a)  α=60;     (b)  A=103 cm17.3 cm2
  25. The triangle ABC has sides: a=26 cm, b=15 cm and c=37 cm. Find the area of this triangle.
    Solutions:    A=156 cm2
  26. The triangle ABC has sides: a=14 cm, b=19 cm and c=7 cm. Find the area of this triangle.
    Solutions:    A39.5 cm2
  27. The triangle ABC has sides: a=6 cm, b=8 cm and c=17 cm. Find the area of this triangle.
    Solutions:    A triangle with these sides doesn't exist.
  28. The triangle ABC has the sides: a=17 cm, b=10 cm and c=21 cm.

    (a)   Find the area.

    (b)   Find the height hc.

    Solutions:    (a)  A=84 cm2;     (b)  hc=8 cm
  29. In the triangle ABC: α=39, β=68 and c=14 cm.

    (a)   Find the angle γ.

    (b)   Find the sides a and b.

    (c)   Find the perimeter and area.

    Solutions:    (a)  γ=73;     (b)  a9.21 cm, b13.6 cm;     (c)  P36.8 cm, A59.8 cm2
  30. In the parallelogram ABCD: a=AB=15 cm, b=BC=7 cm and α=BA^D=60.

    (a)   Find the diagonal f=BD.

    (b)   Find the area of this parallelogram.

    Solutions:    (a)  f=13 cm;     (b)  A90.9 cm2
  31. The rhombus ABCD has the side a=7 cm and the angle α=69.

    (a)   Find the diagonal f=BD.

    (b)   Find the height h.

    (c)   Find the area of this rhombus.

    Solutions:    (a)  f7.93 cm;     (b)  h6.54 cm;     (c)  A45.7 cm2
  32. A regular pentagon is inscribed in the circle with the radius r=8 cm.

    (a)   Find the side of this pentagon.

    (b)   Find the diagonal.

    (c)   Find the area.

    Solutions:    (a)  a9.40 cm;     (b)  d15.2 cm;     (c)  A152 cm2
  33. A regular octagon ABCDEFGH has the side a=10 cm.

    (a)   Find the diagonal AC.

    (b)   Find the inradius r (radius of the inscribed circle).

    (c)   Find the area of this octagon.

    Solutions:    (a)  AC18.5 cm;     (b)  r12.1 cm;     (c)  A483 cm2
  34. A regular nonagon has the side a=6 cm.

    (a)   Find the circumradius R (radius of the circumscribed circle).

    (b)   Find the length of the longest diagonal.

    (c)   Find the area of this nonagon.

    Solutions:    (a)  R8.77 cm;     (b)  d17.3 cm;     (c)  A223 cm2
  35. In the triangle ABC: a=2 cm, b=7 cm and c=33 cm.

    (a)   Find the angle α.

    (b)   Find the angle β. Try calculating β using the cosine rule and using the sine rule.

    Solutions:    (a)  α813;     (b)  β=150 (and not 30)
  36. In the triangle ABC: a=19 cm, b=21 cm and α=60.

    (a)   Find the angle β. Write down both possible values of β.

    (b)   Find the side c. Write down both possible values of c.

    Solutions:    (a)  β17310, β210650;     (b)  c1=16 cm, c2=5 cm
  37. In the triangle ABC: a=7 cm, b=13 cm and α=105. Find the angle β and the side c.
    Solutions:    Such a triangle can't exist.
  38. In the triangle ABC: a=7 cm, b=13 cm and α=68. Find the angle β and the side c.
    Solutions:    Such a triangle can't exist.
  39. In the triangle ABC: a=7 cm, b=13 cm and α=29. Find the angle β and the side c.
    Solutions:    Two solutions: (1)  β16412, c114.4 cm;     (2)  β211548, c28.32 cm
  40. The triangle ABC has the sides a=5 cm, b=8 cm and the area A=8 cm2. Find the side c.
    Solutions:    Two solutions: c13.96 cm, c212.7 cm
  41. The circle has the radius r=5 cm. Find the area and perimeter of this circle.
    Solutions:    A=25π cm278.5 cm2, P=10π cm31.4 cm
  42. The circle has the circumference 100 cm. Find the area of this circle.
    Solutions:    r15.9 cm, A796 cm2
  43. Write the following angles in radians:

    (a)   30

    (b)   45

    (c)   120

    (d)   135

    Solutions:    (a)  30=π6;     (b)  45=π4;     (c)  120=2π3;     (d)  135=3π4
  44. Convert the following angles to degrees:

    (a)   π3

    (b)   π2

    (c)   5π6

    (d)   5π4

    Solutions:    (a)  π3=60;     (b)  π2=90;     (c)  5π6=150;     (d)  5π4=225
  45. The circle has the radius r=12 cm. Find the length of the arc which subtends the angle θ=40 at the centre of this circle.
    Solutions:    L=83π cm8.38 cm
  46. The circle has the radius r=9 cm. Find the length of the arc which subtends the angle θ=2 radians.
    Solutions:    L=18 cm
  47. Find the area of the sector of the circle with the radius r=18 cm and the central angle θ=10.
    Solutions:    A=9π cm228.3 cm2
  48. Given the radius r=6 cm and central angle θ=18π,

    (a)   find the area of the circular sector,

    (b)   find the length of the arc.

    Solutions:    (a)  A7.07 cm2;     (b)  L2.36 cm
  49. Given the radius r=8 cm and central angle θ=90,

    (a)   find the area of the circular sector,

    (b)   find the area of the corresponding circular segment.

    Solutions:    (a)  A150.3 cm2;     (b)  A218.3 cm2
  50. Find the area of the circular segment of the radius r=14 cm and central angle θ=1.
    Solutions:    A15.5 cm2

Powered by MathJax
Index

 Index