Domov

Review exercises  —  vectors

  1. Consider vectors a=(43)b=(22)  and  c=(219).

    (a)   Express vector c in the form c=na+mb.

    (b)   Calculate |a| and |b|.

    (c)   Calculate scalar product ab.

    (d)   Find the angle between a and b.

    Solutions:    (a)  c=3a+5b;     (b)  |a|=5, |b|=22;     (c)  ab=2;     (d)  θ98.1
  2. Points A(1,3), B(13,8) and C(22,23) are three of the vertices of a paralellogram ABCD.

    (a)   Find the coordinates of the vertex D.

    (b)   Calculate angle α=BA^D.

    (c)   Calculate the length of the longer diagonal.

    Solutions:    (a)  D(10,18);     (b)  α36.4;     (c)  AC=29
  3. Quadrilateral ABCD has vertices A(3,1), B(9,4), C(7,9) and D(1,7).

    (a)   Show that this quadrilateral is not a parallelogram.

    (b)   Show that sides AB and CD are parallel.

    Straight line L passes through points A and B.

    (c)   Write the equation of L in the form y=mx+c.

    Solutions:    (a)  ABDC, ADBC ;     (b)  AB=32DC;     (c)  y=14x+74
  4. Triangle ABC has vertices A(1,3,6), B(13,9,10) and C(7,12,8).

    (a)   Calculate lengths of all three sides.

    (b)   Calculate the largest angle in this triangle.

    (c)   Calculate the area of this triangle.

    Solutions:    (a)  a=BC=7, b=AC=11, c=AB=14 ;     (b)  γ=AC^B99.7;     (c)  A37.9
  5. Triangle ABC has A(1,3) and AB=(92), BC=(36).

    (a)   Find the coordinates of points B and C.

    (b)   Write down BA.

    (c)   Calculate the angle β=AB^C.

    Point D is the midpoint of the side AC.

    (d)   Calculate the distance DB.

    Solutions:    (a)  B(8,1), C(11,7);     (b)  BA=(92);     (c)  β104;     (d)  DB=5
  6. Let  PQ=4i+2j+4k  and  PR=6i+8jk.

    (a)   Write QR.

    (b)   Show that PQ is perpendicular to QR.

    Unit vector u has the same direction as PQ.

    (c)   Write u in terms of i, j and k.

    Solutions:    (a)  QR=(265)=2i+6j5k;     (b)  PQQR=0;     (c)  u=23i+13j+23k
  7. Vectors  a=(5142)  and  b=(1010p) have equal lengths.

    (a)   Find p, given that p is a positive number.

    Consider two other vectors:  c=a+b  and  d=ab.

    (b)   Write down c and d.

    (c)   Show that c is perpendicular to d.

    Solutions:    (a)  p=5;     (b)  c=(15247)d=(543);     (c)  cd=0
  8. Line L passes through points P(5,1) and Q(9,5).

    (a)   Write down PQ.

    (b)   Write the equation of L in the form r=a+bt.

    (c)   Calculate the acute angle formed by L and the horizontal axis.

    Solutions:    (a)  PQ=(44);     (b)  r=(51)+(44)t;     (c)  φ=45
  9. Line L1 passes through points A(4,5,1) and B(6,8,0).

    (a)   Find AB.

    (b)   Write the equation of L1 in the form r=a+bt.

    Line L2 has the equation  r=(12100)+(152)t.

    (c)   Find the angle between L1 and L2.

    (d)   Find the intersection point.

    Solutions:    (a)  AB=(231);     (b)  r=(451)+(231)t;     (c)  φ22.0;     (d)  P(14,20,4)
  10. Line L passes through points A(4,2) and is perpendicular to vector v=(34).

    (a)   Write the equation of L in the form r=a+bt.

    (b)   Write the equation of L in the form y=mx+c.

    (c)   Write the equation of L in the form px+qy=s, where p, q and s are integers.

    Solutions:    (a)  r=(42)+(43)t;     (b)  y=34x+5;     (c)  3x+4y=20
  11. Line L1 has the equation  r=(2+3t)i+(1+t)j.

    (a)   Write the equation of L1 in the form r=a+bt.

    (b)   Show that L1 passes through the point A(11,2).

    Line L2 passes through A and is perpendicular to L1.

    (c)   Write the equation of L2 in the form y=mx+c.

    Solutions:    (a)  r=(21)+(31)t;     (c)  y=3x+35

Powered by MathJax
Index

 Index