Domov

Review exercises  —  trigonometry

  1. A right-angled triangle has sides b=12 cm, c=37 cm. Angle BC^A is the right angle.

    (a)   Find the side a.

    (b)   Calculate angles α=CA^B and β=AB^C.

    Solutions:    (a)  a=35 cm;     (b)  α71.1, β18.9
  2. An isosceles triangle has sides a=b=33 cm, c=18 cm.

    (a)   Find the height hc giving your result in exact form.

    (b)   Calculate area. Round your result to three significant figures.

    (c)   Calculate all three angles.

    Solutions:    (a)  hc=127 cm;     (b)  A286 cm2;     (c)  α=β74.2, γ31.7
  3. Triangle ABC has sides b=17 cm, c=22 cm and angle A^=5240.

    (a)   Calculate side a.

    (b)   Calculate angle B^. Give its value rounded to the nearest minute.

    (c)   Calculate the area of this triangle.

    Solutions:    (a)  a17.9 cm;     (b)  B^499;     (c)  A 149 cm2
  4. Triangle ABC has side b=8 cm and angles A^=45.6, C^=76.5.

    (a)   Calculate side a.

    (b)   Calculate the area.

    (c)   Hence calculate the altitude ha.

    Solutions:    (a)  a6.75 cm;     (b)  A26.2 cm2;     (c)  ha=2Aa7.78 cm
  5. Triangle ABC has sides a=11 cm, b=20 cm, c=13 cm.

    (a)   Calculate the largest angle in this triangle.

    (b)   Hence or otherwise calculate the area.

    The midpoint of the side AB is labelled P.

    (c)   Calculate PC.

    Solutions:    (a)  AB^C113;     (b)  A=66 cm2;     (c)  PC14.8 cm
  6. Function f has the equation f(x)=2sin3x.

    (a)   Draw the graph of f, for 3x3.

    Let P be the x-axis intercept with the smallest positive x.

    (b)   Find the equation of the tangent at P.

    (c)   Calculate the area of the region enclosed by f and the horizontal axis between the origin O and P.

    Solutions:    P(π3,0);     (b)  y=6x+2π;     (c)  A=431.33
  7. Consider the function f(x)=cosx+π2. This function has a tangent L at point A(2π,0).

    (a)   Find the equation of the tangent L.

    (b)   Calculate the area of the triangular region enclosed by L and both coordinate axes. Write the result in exact form.

    Solutions:    (a)  y=12xπ;     (b)  A=π2
  8. Function f(x)=asinbx+c has a maximum at A(12,5). The first next minimum is at B(32,1). Find values of constants a, b and c.
    Solutions:    a=2, b=π, c=3
  9. Consider the functions f(x)=sin2x and g(x)=18x3, for 2x4.

    (a)   Draw graphs of f and g on the given interval.

    (b)   Find intersection points of f and g.

    (c)   Calculate the area of the region enclosed by f and g.

    Solutions:    (b)  P(0,0), Q(1.92,0.884);     (c)  A0.696
  10. Function f is a piecewise defined function: f(x)={4x2;x02cosx+2;x>0

    (a)   Draw graph of f.

    (b)   Find the equation of the tangent to f at x=1.

    (c)   Calculate the area of the region enclosed by f and x-axis, for 2xπ.

    Solutions:    (b)  y=2x+5;     (c)  A11.6

Powered by MathJax
Index

 Index