Domov

Review exercises  —  sequences and series

  1. An arithmetic sequence has the terms: u1=27 and u2=39.

    (a)   Write down the common difference.

    (b)   Write down the 10th term.

    (c)   Write down the nth term.

    (d)   Calculate the sum of the first 10 terms.

    Solutions:    (a)  d=12;     (b)  u10=135;     (c)  un=15+12n;     (d)  S10=810
  2. In an arithmetic sequence u1=1001 and u15=777.

    (a)   Write down the nth term.

    (b)   Find the number of positive terms.

    (c)   Write down the smallest positive term.

    (d)   Calculate the sum of all positive terms.

    Solutions:    (a)  un=101716n;     (b)  63 positive terms;     (c)  u63=9;     (d)  S63=31815
  3. Numbers u1=m, u2=m12 and u3=m+m are the first three terms of an arithmetic sequence.

    (a)   Find m.

    (b)   Write down the general term.

    (c)   Given that the nth term of this sequence is 600, find n.

    The sum of the first k terms is labelled Sk.

    (d)   Find k so that Sk=15750.

    Solutions:    (a)  m=36;     (b)  un=18n12;     (c)  n=34;     (d)  k=42
  4. In a geometric sequence u1=2 and u2=10.

    (a)   Find the common ratio.

    (b)   Write down the nth term.

    The first n terms of this sequence are less than 1010.

    (c)   Find n.

    (d)   Find the sum of the first n terms.

    Solutions:    (a)  r=5;     (b)  un=25n1;     (c)  n=14;     (d)  S14=3051757812
  5. In an infinite geometric sequence u1=5120 and u6=1215.

    (a)   Find the common ratio.

    (b)   Find the terms u2, u3, u4 and u5.

    (c)   Find the sum of the infinite sequence.

    Solutions:    (a)  r=34;     (b)  u2=3840, u3=2880, u4=2160, u5=1620;     (c)  S=20480
  6. Numbers u1=m, u2=m+3 and u3=m22m+9 are the first three terms of an infinite geometric sequence.

    (a)   Find m.

    (b)   Write down the n-th term.

    Some terms in this sequence have the value less than 1 million.

    (c)   Find how many terms have the value less than 1 million.

    (d)   Find the lagest among these terms.

    (e)   Calculate the sum of these terms.

    Solutions:    (a)  m=3;     (b)  un=32n1;     (c)  19 terms;     (d)  u19=786432;     (e)  S19=1572861
  7. The n-th term of a sequence is un=818(23)n1.

    (a)   Write down terms u4 and u5.

    (b)   Show that this is a geometric sequence.

    (c)   Calculate the following two sums, giving your results in exact form:

    (i)   k=16uk

    (ii)   k=1uk

    Solutions:    (a)  u4=3, u5=2;     (b)  un+1un=23=constant;     (c)(i)  S6=66524;     (ii)  S=2438

Powered by MathJax
Index

 Index