Domov

Polynomials and rational functions

Polynomials

  1. Write down the degree, the leading coefficient and the constant term of the following polynomials:

    (a)   p(x)=4x35x2+3x+12

    (b)   p(x)=12x5x23

    (c)   p(x)=x6+x4x2

    Solutions:    (a)  degree = 3, leading coefficient = 4, constant term = 12;     (b)  degree = 5, leading coefficient =12, constant term =3;     (c)  degree = 6, leading coefficient =1, constant term = 0
  2. Given polynomials p(x)=2x3+x2+3x5 and q(x)=x3+2x+7 write down:

    (a)   (p+q)(x)

    (b)   (pq)(x)

    (c)   (pq)(x)

    Solutions:    (a)  (p+q)(x)=3x3+x2+5x+2;     (b)  (pq)(x)=x3+x2+x12;     (c)  (pq)(x)=2x6+x5+7x4+11x3+13x2+11x35
  3. Find the value of the polynomial p(x)=x4+2x36x2+x1 at given points:

    (a)   at x=1

    (b)   at x=2

    (c)   at x=4

    Solutions:    (a)  p(1)=3;     (b)  p(2)=9;     (c)  p(4)=27
  4. Which of the following numbers is a zero of the polynomial p(x)=x33x210x+24:

    (a)   x=1

    (b)   x=2

    (c)   x=3

    (d)   x=4

    Solutions:    (a)  x=1 is not a zero (p(1)=12);     (b)  x=2 is a zero (p(2)=0);     (c)  x=3 is not a zero (p(3)=6);     (d)  x=4 is a zero (p(4)=0)
  5. Find zeros of the following polynomials using factorisation:

    (a)   p(x)=x3+2x215x

    (b)   p(x)=x35x24x+20

    (c)   p(x)=x43x3x2+3x

    Solutions:    (a)  x1=0, x2=3, x3=5;     (b)  x1=2, x2=2, x3=5;     (c)  x1=0, x2=1, x3=1, x4=3
  6. Find zeros of the following polynomials using factorisation:

    (a)   p(x)=x32x24x+8

    (b)   p(x)=x44x2

    (c)   p(x)=x54x4+4x3

    Solutions:    (a)  x1,2=2, x3=2;     (b)  x1,2=0, x3=2, x4=2;     (c)  x1,2,3=0, x4,5=2
  7. Factorise the following polynomials:

    (a)   p(x)=x53x45x3+15x2+4x12

    (b)   p(x)=x52x43x3+6x24x+8

    (c)   p(x)=x55x4+4x320x2

    Solutions:    (a)  p(x)=(x+1)(x1)(x+2)(x2)(x3);     (b)  p(x)=(x2)2(x+2)(x2+1);     (c)  p(x)=x2(x5)(x2+4)
  8. Find zeros and draw graphs of the following polynomials:

    (a)   p(x)=x3+x22x

    (b)   p(x)=x33x

    (c)   p(x)=x45x2+4

    (d)   p(x)=x54x3+3x

    Solutions:    (a)  x1=0, x2=1, x3=2;     (b)  x1=0, x2=3, x3=3;     (c)  x1=1, x2=1, x3=2, x4=2;     (d)  x1=0, x2=1, x3=1, x4=3, x5=3
  9. Find zeros and draw graphs of the following polynomials:

    (a)   p(x)=x45x3+6x2

    (b)   p(x)=x4+x32x2

    (c)   p(x)=x42x3

    (d)   p(x)=x5+4x4+4x3

    Solutions:    (a)  x1,2=0, x3=2, x4=3;     (b)  x1,2=0, x3=1, x4=2;     (c)  x1,2,3=0, x4=2;     (d)  x1,2,3=0, x4,5=2
  10. Factorise and draw graphs of the following polynomials:

    (a)   p(x)=x3+3x2+x+3

    (b)   p(x)=x42x23

    Solutions:    (a)  p(x)=(x+3)(x2+1);     (b)  p(x)=(x3)(x+3)(x2+1)
  11. Use your GDC to draw graph of the polynomial p(x)=2x33x2+5

    (a)   Using GDC find zeros.

    (b)   Using GDC find extreme points (maxima and minima).

    Solutions:    (a)  zero: x1=1;     (b)  maximum P1(0,5), minimum P2(1,4)
  12. Use your GDC to draw graph of the polynomial p(x)=x32x2+x1

    (a)   Using GDC find zeros.

    (b)   Using GDC find extreme points (maxima and minima).

    Solutions:    (a)  zero: x11.755;     (b)  maximum P1(0.333,0.852), minimum P2(1,1)

Limits

  1. Evaluate the following limits:

    (a)   limx2x+3x1

    (b)   limxx+23x+5

    (c)   limx5+6x14x

    Solutions:    (a)  =2;     (b)  =13;     (c)  =32
  2. Evaluate the following limits:

    (a)   limxx2+x+1x2+5x

    (b)   limx2x2xx2+1

    (c)   limx±(x+1)22x(x+2)

    (d)   limx±3x3+1(x+1)3

    Solutions:    (a)  =1;     (b)  =2;     (c)  =12;     (d)  =3
  3. Evaluate the following limits (if possible):

    (a)   limxx2+2xx3+1

    (b)   limx1x2+1

    (c)   limxx22x+3

    Solutions:    (a)  =0;     (b)  =0;     (c)  Not possible – the limit doesn't exist.

Rational functions

  1. Write down zeros, vertical asymptotes and horizontal asymptotes of the following functions and draw the graphs:

    (a)   f(x)=x+1x1

    (b)   f(x)=2x3x1

    (c)   f(x)=x+12x+5

    Solutions:    (a)  zero: x=1, vertical asymptote (pole): x=1, horizontal asymptote: y=1;     (b)  zero: x=32, vertical asymptote (pole): x=1, horizontal asymptote: y=2;     (c)  zero: x=1, vertical asymptote (pole): x=52, horizontal asymptote: y=12;
  2. Write down zeros, vertical asymptotes and horizontal asymptotes of the following functions and draw the graphs:

    (a)   f(x)=1x+2

    (b)   f(x)=23x4

    (c)   f(x)=11x

    Solutions:    (a)  zero: /, vertical asymptote (pole): x=2, horizontal asymptote: y=0;     (b)  zero: /, vertical asymptote (pole): x=43, horizontal asymptote: y=0;     (c)  zero: /, vertical asymptote (pole): x=1, horizontal asymptote: y=0;
  3. Given the function f(x)=3x32x1

    (a)   write down the zero, vertical asymptote and horizontal asymptote,

    (b)   draw the graph,

    (c)   write the domain and range.

    Solutions:    (a)  zero: x=1, vertical asymptote: x=12, horizontal asymptote: y=32;     (c)  domain =R{12}, range =R{32}
  4. Given the function f(x)=1x2+x

    (a)   write down the zero, vertical asymptote and horizontal asymptote,

    (b)   draw the graph,

    (c)   write the domain and range.

    Solutions:    (a)  zero: x=1, vertical asymptote: x=2, horizontal asymptote: y=1;     (c)  domain =R{2}, range =R{1}
  5. A rational function has the equation f(x)=x2x2+x2.

    (a)   Find zeros, vertical asymptotes and horizontal asymptote.

    (b)   Draw the graph.

    (c)   Find the point where the graph intersects the horizontal asymptote.

    Solutions:    (a)  zero x1,2=0, vertical asymptotes x=1 and x=2, horizontal asymptote y=1;     (c)  intersection: P(2,1)
  6. A rational function has the equation f(x)=x2+4x+4x21.

    (a)   Find zeros, vertical asymptotes and horizontal asymptote.

    (b)   Draw the graph.

    (c)   Find the point where the graph intersects the horizontal asymptote.

    (d)   Find the extreme points.

    Solutions:    (a)  zero x1,2=2, vertical asymptotes x=1 and x=1, horizontal asymptote y=1;     (c)  intersection: P(1.2,1);     (d)  min: (2,0), max: (0.5,3)
  7. A rational function has the equation f(x)=x+1x2.

    (a)   Find zeros, vertical asymptotes and horizontal asymptote.

    (b)   Draw the graph.

    (c)   Find the extreme points.

    Solutions:    (a)  zero x1=1, vertical asymptotes x1,2=0, horizontal asymptote y=0;     (c)  min: (2,0.25)
  8. A rational function has the equation f(x)=x1x2+5x+4.

    (a)   Find zeros, vertical asymptotes and horizontal asymptote.

    (b)   Draw the graph.

    (c)   Find the extreme points.

    Solutions:    (a)  zero x1=1, vertical asymptotes x=1 and x=4, horizontal asymptote y=0;     (c)  min: (2.162,1.481), max: (4.162,0.075)
  9. A rational function has the equation f(x)=x23xx2+1.

    (a)   Find zeros, vertical asymptotes and horizontal asymptote.

    (b)   Draw the graph.

    (c)   Find the extreme points.

    Solutions:    (a)  zeros x1=0, x2=3, vertical asymptotes don't exist, horizontal asymptote y=1;     (c)  min: (0.721,1.081), max: (1.387,2.081)
  10. A rational function has the equation f(x)=x32x2x22x+1.

    (a)   Find zeros, vertical asymptotes and horizontal asymptote.

    (b)   Draw the graph.

    Solutions:    (a)  zeros x1,2=0, x3=2, vertical asymptote x=1, horizontal asymptote doesn't exist
  11. A rational function has the equation f(x)=xx+11x1.

    (a)   Draw the graph (using GDC).

    (b)   Write down zeros, vertical asymptotes and horizontal asymptote (using GDC).

    (c)   Find the zeros algebraically and write down the exact values.

    Solutions:    (b)  zeros x10.414, x22.414, vertical asymptotes x=1 and x=1, horizontal asymptote y=1;     (c)  zeros: x1=12, x2=1+2

Powered by MathJax
Index

 Index