Domov

Linear function

Equations

  1. Solve the following equations:

    (a)   8x4=5(x+1)

    (b)   x2+2x+8=(x2)x

    (c)   (x+2)2(x1)2=9(x3)

    (d)   (x1)(x+2)(x+3)=x3+4x2+8x+16

    Solutions:    (a)  x=3;     (b)  x=2;     (c)  x=10;     (d)  x=227
  2. Solve the following equations:

    (a)   x3=x+24

    (b)   x44x=3x72

    (c)   x+53=1+23(x+12)

    (d)   14(x+2)2(x12)2=14+4x

    (e)   (x+12)3=18(x3+3x2)1

    Solutions:    (a)  x=6;     (b)  x=23;     (c)  x=1;     (d)  x=15;     (e)  x=3
  3. Solve the following equations:

    (a)   12x+1=13x2

    (b)   x+1x1=32

    (c)   xx+2+3x2=1

    (d)   2xx2=x+2x2

    Solutions:    (a)  x=3;     (b)  x=5;     (c)  x=10;     (d)  No solution: x doesn't exist.

Inequalities

  1. Simplify the following inequalities:

    (a)   x+3x3+11

    (b)   x+76>12(x13)

    (c)   (x+22)214(x+3)2

    (d)   x+12x23<x(x+2)6

    Solutions:    (a)  x12;     (b)  x<4;     (c)  x52;     (d)  x>23
  2. Solve the following inequalities in Z (write the sets of all integers which satisfy the inequalities):

    (a)   x+73+(x1)2x2

    (b)   1225x2<x2(x+12)2

    Solutions:    (a)  x{2, 3, 4, 5, };     (b)  x{4, 5, ,6, 7, }
  3. Solve the following inequalities in R. Write the sets of solutions as intervals:

    (a)   2+3x4x2(x12)2

    (b)   x23x2252x3x35

    Solutions:    (a)  x[3,);     (b)  x(,1]

Simultaneous inequalities

  1. Simplify simultaneous inequalities:

    3(x3)>x7,    2(x+5)6x2

    Solutions:    1<x3
  2. Simplify simultaneous inequalities. Write the set of all integers which satisfy simultaneously both inequalities:

    (a)   5x6<x+10,    4x2(x+5)

    (b)   13(x12)>0,    xx+32x6+1

    Solutions:    (a)  x{2, 1, 0, 1, 2, 3};     (b)  x{1, 2, 3, 4, 5, 6, 7}
  3. Solve simultaneous inequalities in R. Write the set of all solutions as an interval:

    13(x12)>0,    xx+32x6+1

    Solutions:    x(12,152]
  4. Solve simultaneous inequalities in R:

    1x24x2,    (x+1)2<x2+1

    Solutions:    No solutions, x doesn't exist.

Straight line graph

  1. Write down the gradient (m) and y-intercept (c) for the following linear functions:

    (a)   f(x)=2x5

    (b)   f(x)=x+3

    (c)   f(x)=3x

    (d)   f(x)=5

    Solutions:    (a)  m=2, c=5;     (b)  m=1, c=3;     (c)  m=1, c=3;     (d)  m=0, c=5
  2. Write down the gradient (m) and y-intercept (c) for the following straight lines:

    (a)   y=x

    (b)   y=12x+3

    (c)   y=12+x3

    (d)   y=3x212

    Solutions:    (a)  m=1, c=0;     (b)  m=12, c=3;     (c)  m=13, c=12;     (d)  m=14, c=16
  3. Write down the gradient (m) and y-intercept (c) for the following straight lines:

    (a)   x+y=2

    (b)   2x4y+1=0

    (c)   x3+y6=1

    Solutions:    (a)  m=1, c=2;     (b)  m=12, c=14;     (c)  m=2, c=6
  4. Draw the graphs of the following linear functions:

    (a)   f(x)=x+2

    (b)   f(x)=2x1

    (c)   f(x)=13x+1

  5. Draw the following straight lines:

    (a)   y=x

    (b)   y=2x+3

    (c)   x2y=4

    (d)   x3+y2=1

  6. Straight line passes through points A(1,2) and B(4,7). Write down the equation of this straight line.
    Solutions:    y=3x5
  7. Straight line passes through points A(2,1) and B(7,5).

    (a)   Write down the equation of this straight line.

    (b)   Draw this straight line in the coordinate system.

    Solutions:    (a)  y=23x+13
  8. Straight line passes through points A(13,14) and B(43,12).

    (a)   Write down the equation of this straight line.

    (b)   Find the coordinates of the x-axis intercept.

    (c)   Draw this straight line in the coordinate system.

    Solutions:    (a)  y=34x12;     (b)  C(23,0)
  9. Straight line has the equation 4x+3y=24.

    (a)   Find the coordinates of x-axis intercept A and y-axis intercept B.

    (b)   Calculate the length of the line segment AB.

    (c)   Draw this straight line in the coordinate system.

    Solutions:    (a)  A(6,0), B(0,8);     (b)  AB=10
  10. Straight line 1 has the equation x6y+3=0.

    (a)   Find the gradient and the y-intercept of the line 1.

    (b)   Write the equation of the straight line 2 which is parallel to 1 and passes through the origin.

    Solutions:    (a)  m=16, c=12;     (b)  y=16x
  11. Straight lines 1 and 2 have the equations    1:  y=12x6    and    2:  y=mx2.

    (a)   Find m, given that 1 || 2.

    (b)   Find the area of the triangle formed by the line 2 and both coordinate axes.

    Solutions:    (a)  m=13;     (b)  A=6

Simultaneous linear equations

  1. Find the point of intersection of the following two straight lines:

    y=3x2,    y=12x+3

    Solutions:    P(2,4)
  2. Solve the simultaneous linear equations:

    (a)   x+2y=10,    3x+5y=27

    (b)   y=2x+7,    4x+2y=6

    (c)   7xy=5,    5x+3y=2

    (d)   23x+43y=23,    12x+32y=1

    Solutions:    (a)  x=4, y=3;     (b)  x=1, y=5;     (c)  x=12, y=32;     (d)  x=7, y=3
  3. Straight lines 1 and 2 have the equations    1:  y=2x+6    and    2:  y=12x1.

    (a)   Find the point of intersection P.

    (b)   Find the area of the triangle formed by the lines 1, 2 and y-axis.

    Solutions:    (a)  P(145,25);     (b)  A=495=9.8

Powered by MathJax
Index

 Index