Domov

Integration

Indefinite integral

  1. Find each of following integrals:

    (a)   (x3+2x+7)dx

    (b)   (1+1x2+1x)dx

    (c)   x3+x21xdx

    Solutions:    (a)  =14x4+x2+7x+C;     (b)  =x1x+ln|x|+C;     (c)  =x33+x22ln|x|+C
  2. Integrate:

    (a)   (x+x+1)dx

    (b)   3xdx

    (c)   (x3+x23)dx

    (d)   2x2x1/21xdx

    Solutions:    (a)  =12x2+23x3+x+C;     (b)  =6x+C;     (c)  =34x43+35x53+C;     (d)  =45x52xln|x|+C
  3. Integrate with respect to x:

    (a)   (cosxsinx)dx

    (b)   (sinx+3cosx+ex)dx

    Solutions:    (a)  =sinx+cosx+C;     (b)  =cosx+3sinx+ex+C
  4. Find the equation of the function which has   f(x)=2cosx   and   f(0)=3.
    Solution:    f(x)=2sinx+3
  5. Find the function f knowing that its derivative is f(x)=2x+3 and its graph passes through the point P(2,8).
    Solution:    f(x)=x2+3x2
  6. A curve passes through the point P(1,4) and its gradient function is 9x25. Write down the equation of this curve.
    Solution:    y=3x35x+6
  7. Find y and express it in terms of x (for x>0), given that dydx=1x and y=3 when x=1.
    Solution:    y=lnx+3

Definite integral

  1. Evaluate each of following integrals:

    (a)   12(x2+5) dx

    (b)   09x dx

    (c)   0π(cosx+2) dx

    Solutions:    (a)  =12;     (b)  =18;     (c)  =2π
  2. Evaluate the integrals:

    (a)   20(x34x) dx

    (b)   02(x34x) dx

    (c)   22(x34x) dx

    Solutions:    (a)  =4;     (b)  =4;     (c)  =0
  3. Find the area of the figure enclosed by the graph of the function f(x)=x2x+1, the x-axis and vertical lines x=1 and x=2.
    Solution:    A=92=4.5
  4. Find the area of the region between by the graph of the function f(x)=ex and the x-axis for 0x2. Round the result to three significant figures.
    Solution:    A=6.39
  5. Find the area of the region between by the curve y=3x and the x-axis on the interval [1,4].
    Solution:    A=14
  6. Find the area of the region between by the curve y=9x2 and the x-axis.
    Solution:    A=36
  7. Find the area of the region enclosed by the graph of the function f(x)=x3+2x2 and the x-axis.
    Solution:    A=43
  8. Find the area of the region enclosed by the curve y=x2 and the straight line y=x+2.
    Solution:    A=92=4.5
  9. Find the area between the curves y=x24x2 and y=4x2.
    Solution:    A=2113
  10. Find the area of the figure between the graphs of the functions f(x)=x21 and g(x)=5x2. Give the result in the exact form.
    Solution:    A=83
  11. Find the area of the region enclosed by the graphs of the functions f(x)=3x and g(x)=x22x.
    Solution:    A=6     (Hint: Use your GDC to determine the limits of integration.)

Integration by substitution

  1. Integrate:

    (a)   (2x+3)2dx

    (b)   2x+5dx

    (c)   1x+5dx

    Solutions:    (a)  =16(2x+3)3+C;     (b)  =13(2x+5)3+C;     (c)  =ln|x+5|+C
  2. Integrate:

    (a)   e4x1dx

    (b)   sin5xdx

    (c)   cosx+π7dx

    Solutions:    (a)  =14e4x1+C;     (b)  =15cos5x+C;     (c)  =7sinx+π7+C
  3. Integrate:

    (a)   2xdxx2+4

    (b)   2xdxx2+1

    (c)   cosxdxsinx

    (d)   tanxdx

    Solutions:    (a)  =2x2+4+C;     (b)  =ln(x2+1)+C;     (c)  =ln|sinx|+C;     (d)  =ln|cosx|+C
  4. Integrate:

    (a)   sinx2cosx+3dx

    (b)   cosxsin2xdx

    (c)   sin5xcosxdx

    Solutions:    (a)  =12ln(2cosx+3)+C;     (b)  =1sinx+C;     (c)  =16sin6x+C
  5. Integrate:

    (a)   x9x2dx

    (b)   2x3x23x+5dx

    (c)   x+1x2+2x+3dx

    Solutions:    (a)  =9x2+C;     (b)  =ln(x2+3x+5)+C;     (c)  =x2+2x+3+C
  6. Evaluate the following integrals:

    (a)   183x+1dx

    (b)   132x+3dx

    Solutions:    (a)  =26;     (b)  =263=823
  7. Evaluate the following integrals:

    (a)   12(2x1)3dx

    (b)   1122x+33dx

    (c)   0512x+3dx

    Solutions:    (a)  =10;     (b)  =30;     (c)  =2
  8. Evaluate the following integrals:

    (a)   0π2sin2xdx

    (b)   0πcosxπ4dx

    (c)   20ex+2dx

    Solutions:    (a)  =1;     (b)  =222.83;     (c)  =e216.39
  9. Find the area of the region between by the graph of the function f(x)=2x+1 and the x-axis for 0x4.
    Solution:    A=823
  10. Find the area of the region enclosed by the graph of the function f(x)=x+4, the x-axis and the vertical line x=5.
    Solution:    A=18
  11. Find the area of the region enclosed by the graph of the function f(x)=12x+2 and the straight line y=x+6. Round the result to three significant figures.
    Solution:    A=1612ln32.82

Improper integrals

  1. Evaluate the integrals with infinite limits of integration:

    (a)   11x2dx

    (b)   04(x+2)2dx

    (c)   0e2xdx

    Solutions:    (a)  =1;     (b)  =2;     (c)  =12
  2. Find the area of the region between by the graph of the function f(x)=xex2 and the x-axis for x[0,).
    Solution:    A=12

Volume of the solid of revolution

  1. The function has the equation f(x)=x. Find the volume of the solid of revolution when the part of the graph between x=0 and x=4 is rotated through 360 around the x-axis.
    Solution:    V=8π
  2. The part of the function f(x)=3x between x=0 and x=3 is rotated by 360 around the x-axis. Name the solid obtained this way and find its volume. Write the result in exact form.
    Solution:    It's a cone and its volume is 9π.
  3. Find the volume of revolution when the part of the curve y=1x2 between both x-intercepts is rotated by 2π radians around x-axis. Round the result to three significant figures.
    Solution:    V3.35
  4. Find the volume of the solid formed when the graph of the function f(x)=9x2 is revolved about the x-axis. Write the result as a multiple of π.
    Solution:    V=36π     (Hint: You need the limits of integration. To determine them you must find the interval where the function is defined.)

Powered by MathJax
Index

 Index