Domov

Functions

Transformations of graphs

  1. Using your GDC draw the graph of the function y=x2. Then use your GDC to draw the following graphs and explain the transformation used in each case:

    (a)   y=x2+1

    (b)   y=x23

    (c)   y=(x2)2

    Solutions:    (a)  Translation of 1 unit parallel to the y-axis (shift upwards 1 unit);     (b)  translation of  −3 units parallel to the y-axis (shift downwards 3 units);     (c)  translation of 2 units parallel to the x-axis (shift right 2 units)
  2. Using your GDC draw the graph of the function y=x2. Then use your GDC to draw the following graphs and explain the transformation used in each case:

    (a)   y=f(x)2

    (b)   y=f(x3)

    (c)   y=f(x+2)

    Solutions:    (a)  Translation of  −2 units along the y-axis (shift downwards 2 units);     (b)  translation of 3 units along the x-axis (shift right 3 units);     (c)  translation of  −2 units along the x-axis (shift left 2 units)
  3. Using your GDC draw the graph of the function f(x)=1x2+1. Then use your GDC to draw the following graphs and explain the transformation used in each case:

    (a)   y=2f(x)

    (b)   y=3f(x)

    (c)   y=12f(x)

    Solutions:    (a)  Dilation along the y-axis by a scale factor 2 (stretch along y-axis by 2);     (b)  dilation along the y-axis by a scale factor 3 (stretch along y-axis by 3);     (c)  dilation along the y-axis by a scale factor 12 (stretch along y-axis by 12)
  4. Using your GDC draw the graph of the function f(x)=1x2+1. Then use your GDC to draw the following graphs and explain the transformation used in each case:

    (a)   y=f(x)

    (b)   y=2f(x)

    (c)   y=12f(x)

    Solutions:    (a)  Dilation along the y-axis by a scale factor  −1  =  reflection in the x-axis (flip upside down);     (b)  dilation along the y-axis by a scale factor  −2 (flip upside down and stretch along y-axis by 2);     (c)  dilation along the y-axis by a scale factor 12 (flip upside down and stretch along y-axis by 12)
  5. Draw the graph of the function f(x)=log2x. Then draw the following graphs manually  –  using transformations:

    (a)   y=2f(x)

    (b)   y=12f(x)

    (c)   y=f(x)

    (d)   y=2f(x)

    Solutions:    (a)  Dilation along the y-axis by a scale factor 2;     (b)  dilation along the y-axis by a scale factor 12;     (c)  reflection in the x-axis;     (d)  dilation along the y-axis by a scale factor  −2
  6. Using your GDC draw the graph of the function f(x)=2x. Then use your GDC to draw the following graphs and explain the transformation used in each case:

    (a)   y=f(2x)

    (b)   y=f(3x)

    (c)   y=f(x2)

    Solutions:    (a)  Dilation along the x-axis by a scale factor 12 (stretch along x-axis by 12);     (b)  dilation along the x-axis by a scale factor 13 (stretch along x-axis by 13);     (c)  dilation along the x-axis by a scale factor 2 (stretch along x-axis by 2)
  7. Using your GDC draw the graph of the function f(x)=2x. Then use your GDC to draw the following graphs and explain the transformation used in each case:

    (a)   y=f(x)

    (b)   y=f(2x)

    (c)   y=f(x2)

    Solutions:    (a)  Dilation along the x-axis by a scale factor  −1  =  reflection in the y-axis (flip left-to-right);     (b)  dilation along the x-axis by a scale factor 12 (flip left-to-right and stretch along x-axis by 12);     (c)  dilation along the x-axis by a scale factor  −2 (flip left-to-right and stretch along x-axis by 2)
  8. Draw the graph of the function f(x)=log2x. Then draw the following graphs manually  –  using transformations:

    (a)   y=f(2x)

    (b)   y=f(x)

    (c)   y=f(2x)

    Solutions:    (a)  Dilation along the x-axis by a scale factor 12;     (b)  reflection in the y-axis;     (c)  dilation along the x-axis by a scale factor 12
  9. The graph of the function y=f(x) is drawn in the coordinate system below. Draw the following graphs using transformations:

    (a)   y=f(x)2

    (b)   y=f(x2)

    (c)   y=2f(x)

    (d)   y=12f(x)

    (e)   y=f(12x)

    Function

    Solutions:    (a)  Translation of  −2 units along y-axis;     (b)  translation of 2 units along x-axis;     (c)  dilation along the y-axis by a scale factor 2;     (d)  dilation along the y-axis by a scale factor 12;     (e)  dilation along the x-axis by a scale factor 2
  10. Use transformations to draw the graph of the function:   y=42x2
    Solutions:    (1)  Draw y=2x;     (2)  use reflection in x-axis (flip upside down) to obtain y=2x;     (3)  use translation of 4 units along y-axis to obtain y=42x;     (4)  use translation of 2 units along x-axis to obtain y=42x2
  11. Use transformations to draw the graph of the function:   y=log4(2x+6)
    Solutions:    (1)  Draw y=log4x;     (2)  use dilation along the x-axis by a scale factor 12 to obtain y=log2(2x);     (3)  use translation of  −3 units along x-axis to obtain y=log4(2x+6)

Composite functions

  1. Given the functions f(x)=3x+1 and g(x)=x2+2 evaluate the following expressions:

    (a)   f(g(1))

    (b)   (fg)(2)

    (c)   (gf)(2)

    (d)   (gf)(5)

    Solutions:    (a)  f(g(1))=(fg)(1)=10;     (b)  (fg)(2)=19;     (c)  (gf)(2)=27;     (d)  (gf)(5)=258
  2. Given the functions f(x)=3x+1 and g(x)=x2+2 write down (and simplify) the composite functions:

    (a)   (fg)(x)

    (b)   (gf)(x)

    Solutions:    (a)  (fg)(x)=3(x2+2)+1=3x2+7;     (b)  (gf)(x)=(3x+1)2+2=9x2+6x+3
  3. Given the functions f(x)=1x and g(x)=5x2 write down the composite functions:

    (a)   fg

    (b)   gf

    Solutions:    (a)  (fg)(x)=15x2;     (b)  (gf)(x)=51x2
  4. Given the functions f: xx3 and g: x1x+2 write down the composite functions:

    (a)   fg

    (b)   gf

    Solutions:    (a)  (fg)(x)=1x+23   or   fg: x1x+23;     (b)  (gf)(x)=1x3+2   or   gf: x1x3+2
  5. Given the functions f(x)=xx+1 and g(x)=x+3x write down the composite functions:

    (a)   (fg)(x)

    (b)   (gf)(x)

    Solutions:    (a)  (fg)(x)=x+32x+3;     (b)  (gf)(x)=4x+3x
  6. Given the functions f(x)=x+1x+5 and g(x)=x+3x+2 write down the composite functions:

    (a)   f(g(x))

    (b)   g(f(x))

    Solutions:    (a)  (fg)(x)=2x+56x+13;     (b)  (gf)(x)=4x+163x+11
  7. Given the functions f(x)=x2x3 and g(x)=3x2x1 write down the composite functions:

    (a)   fg

    (b)   gf

    Solutions:    (a)  (fg)(x)=x;     (b)  (gf)(x)=x
  8. Given the function f(x)=x+2x+1 write down the composite function:

       ff

    Solutions:    (ff)(x)=3x+42x+3
  9. Given the functions f(x)=x2+x and g(x)=x3:

    (a)   write down (fg)(x),

    (b)   solve the equation (fg)(x)=0

    Solutions:    (a)  (fg)(x)=x25x+6;     (b)  x1=2, x2=3
  10. Given the functions f(x)=xx2 and g(x)=3x+1x3:

    (a)   write down f(g(x))

    (b)   solve the equation f(g(x))=12

    Solutions:    (a)  (fg)(x)=3x+1x+7;     (b)  x=1
  11. Given the functions f(x)=x22x and g(x)=2x1 and h(x)=3x4:

    (a)   write down fg,

    (b)   solve the equation (fg)(x)=h(x)

    Solutions:    (a)  (fg)(x)=4x28x+3;     (b)  x1=1, x2=74
  12. Given the functions f(x)=x+2x and g(x)=x+1x+3 and h(x)=x+5x+1:

    (a)   write down (fg)(x),

    (b)   prove that (hh)(x)=3x+5x+3,

    (c)   solve the equation (fg)(x)=(hh)(x)

    Solutions:    (a)  (fg)(x)=3x+7x+1;     (c)  x=2
  13. Given the functions f(x)=x22 and g(x)=x+12 and k(x)=f(g(x)):

    (a)   write down and simplify the equation of k(x),

    (b)   using GDC draw the graph of y=k(x),

    (c)   find the range of k(x)

    Solutions:    (a)  k(x)=14x2+12x74;     (c)  range =[2,)

Inverse function

  1. Find the inverse of each of the following functions:

    (a)   f(x)=2x+1

    (b)   f(x)=3x2

    (c)   f(x)=14x+12

    Solutions:    (a)  f1(x)=x12;     (b)  f1(x)=x+23;     (c)  f1(x)=4x2
  2. Find the inverse of each of the following functions:

    (a)   f(x)=x3+2

    (b)   f(x)=2x3

    (c)   f(x)=14x3

    Solutions:    (a)  f1(x)=x23;     (b)  f1(x)=x23;     (c)  f1(x)=4x3
  3. Find the inverse of each of the following functions:

    (a)   f(x)=2x

    (b)   f(x)=2x+1

    (c)   f(x)=2x+1

    Solutions:    (a)  f1(x)=log2x;     (b)  f1(x)=log2(x1);     (c)  f1(x)=log2x1
  4. Given the function f(x)=x+33

    (a)   write down the inverse function f1(x)

    (b)   draw graphs of f(x) and f1(x) in the same coordinate system.

    Solutions:    (a)  f1(x)=x33
  5. Find the inverse of each of the following functions:

    (a)   f(x)=x+53x2

    (b)   f(x)=3xx2

    Solutions:    (a)  f1(x)=2x+53x1;     (b)  f1(x)=2xx3
  6. Find the inverse of each of the following functions:

    (a)   f(x)=x5x+2

    (b)   f(x)=1+x1x

    Solutions:    (a)  f1(x)=2x+5x+1;     (b)  f1(x)=x1x+1
  7. Find the inverse of each of the following functions:

    (a)   f(x)=x+2x1

    (b)   f(x)=2xx2

    Solutions:    (a)  f1(x)=x+2x1;     (b)  f1(x)=2xx2    —  in both cases f1(x)=f(x)
  8. Prove that the function f(x)=3x+1x3 is its own inverse.
    Solutions:    You can prove it in two ways:    (a)  show that f1(x)=f(x)    or    (b)  show that (ff)(x)=x
  9. Given the function f(x)=2x53x4 write down the following functions:

    (a)   f(x1)

    (b)   (f(x))1

    (c)   f1(x)

    Solutions:    (a)  f(x1)=5x24x3;     (b)  (f(x))1=3x42x5;     (c)  f1(x)=4x53x2
  10. Given f(x)=x52 and g(x)=x+3x write down the following functions:

    (a)   f1(x)

    (b)   g1(x)

    (c)   (fg)(x)

    (d)   (fg)1(x)

    (e)   (g1f1)(x)

    Solutions:    (a)  f1(x)=2x+5;     (b)  g1(x)=3x1;     (c)  (fg)(x)=4x+32x;     (d,e)  (fg)1(x)=(g1f1)(x)=32x+4
  11. Find the inverse of the function f(x)=x23

    (a)   for x0,

    (b)   for x0.

    Solutions:    (a)  f1(x)=x+3;     (b)  f1(x)=x+3
  12. Find the inverse of the function f(x)=x2+4 for x0. Write down the domain and range of f1.
    Solutions:    f1(x)=x24,   domain =[2,),   range =[0,)
  13. Find the inverse of the function f(x)=4x2+1 for x0. Write down the domain and range of f1.
    Solutions:    f1(x)=4x1,   domain =(0,4],   range =[0,)

Powered by MathJax
Index

 Index