Domov

Differentiation

Quick review

  1. Find derivatives of the following functions:

    (a)   f(x)=x42x3+x25x+7

    (b)   f(x)=1x2+x3

    (c)   f(x)=2ex+lnx+cosx

    Solutions:    (a)  f(x)=4x36x2+2x5;     (b)  f(x)=2x3+32x;     (c)  f(x)=2ex+1xsinx
  2. Differentiate the following functions:

    (a)   f(x)=x3lnx

    (b)   f(x)=exsinx

    (c)   f(x)=2x+1x2

    (d)   f(x)=sinx+2cosx

    Solutions:    (a)  f(x)=3x2lnx+x2;     (b)  f(x)=exsinx+excosx;     (c)  f(x)=5x24x+4;     (d)  f(x)=1+2sinxcos2x
  3. Differentiate the following functions:

    (a)   y=(4x+1)3

    (b)   y=x2+9

    (c)   y=sinx+π5

    Solutions:    (a)  y=3(4x+1)24=12(4x+1)2;     (b)  y=xx2+9;     (c)  y=15cosx+π5
  4. The function has the equation:  f(x)=x2+x+13.

    (a)   Differentiate the function f.

    (b)   Write down the equation of the tangent at x=4.

    (c)   Show that this tangent is parallel to the straight line y=3x+1.

    Solutions:    (a)  f(x)=2x+13;     (b)  tangent: y=3x5;     (c)  they have the same gradient: m1=m2=3
  5. The function has the equation:  f(x)=2x+7.

    (a)   Differentiate the function f.

    (b)   Write down the equation of the normal at x=1.

    (c)   This normal and both coordinate axes form a triangle:

    (i)   Write down the coordinates of the vertices of this triangle.

    (ii)   Calculate the area of this triangle.

    Solutions:    (a)  f(x)=12x+7;     (b)  normal: y=3x+6;     (c)  (i)  vertices: A(0,0), B(2,0), C(0,6); (ii)  area: A=6

Stationary points

  1. The function has the equation f(x)=2x315x2+36x25. Find the points on the graph where the tangent is horizontal. Write down the coordinates of these points.
    Solutions:    P1(2,3), P2(3,2)
  2. The function has the equation f(x)=x33x+1. Find the stationary points of this function. Write down the coordinates of these points.
    Solutions:    P1(1,3), P2(1,1)
  3. The function has the equation f(x)=x44x2.

    (a)   Find the zeros of this function.

    (b)   Find the stationary points of this function.

    (c)   Draw the graph.

    Solutions:    (a)  x1=2, x2,3=0, x4=2;     (b)  P1(2,4), P2(0,0), P3(2,4)
  4. The function has the equation f(x)=x3+3x2+3x+2.

    (a)   Find the stationary points of this function.

    (b)   Draw the graph using your GDC and verify the obtained result.

    Solutions:    (a)  P1(1,1)
  5. The function has the equation f(x)=x2+2x.

    (a)   Find the stationary points of this function.

    (b)   Draw the graph using your GDC and verify the obtained result.

    Solutions:    (a)  P1(2,2), P2(2,2)

Second derivative

  1. Write down the first and the second derivative of each of the following functions:

    (a)   f(x)=x3+2x25x+4

    (b)   f(x)=x2+3x+15

    (c)   f(x)=x5

    Solutions:    (a)  f(x)=3x2+4x5, f(x)=6x+4;     (b)  f(x)=2x+35, f(x)=25;     (c)  f(x)=52x3, f(x)=154x
  2. Find y and y of each of the following functions:

    (a)   y=ex+sinx

    (b)   y=xlnx

    (c)   y=x2lnx

    Solutions:    (a)  y=ex+cosx, y=exsinx;     (b)  y=11x, y=1x2;     (c)  y=2xlnx+x, y=2lnx+3
  3. Find dydx and d2ydx2 of each of the following functions:

    (a)   y=exsinx

    (b)   y=1x+3

    Solutions:    (a)  dydx=exsinx+excosx, d2ydx2=2excosx;     (b)  dydx=1(x+3)2, d2ydx2=2(x+3)3
  4. Given that a and b are constants find the first and the second derivative of each of the following functions:

    (a)   y=x2+ax+b

    (b)   y=xa+bx

    Solutions:    (a)  y=2x+a, y=2;     (b)  y=1abx2, y=2bx3
  5. Find the first, the second … and the n-th derivative of the function f(x)=xex.
    Solutions:    f(x)=(x+1)ex, f(x)=(x+2)ex,  , f(n)(x)=(x+n)ex

Determining the type of stationary points

  1. The function has the equation:  f(x)=x33x2+1.

    (a)   Using the first derivative find the stationary points.

    (b)   Using the second derivative determine the type of each of these points.

    Solutions:    Maximum: P1(0,1),  minimum: P2(2,3)
  2. The function has the equation:  f(x)=x44x2.

    (a)   Find the stationary points.

    (b)   Determine the nature of each stationary point.

    Solutions:    Minimum: P1(2,4),  maximum: P2(0,0),  minimum: P3(2,4)
  3. The function has the equation:  f(x)=6x4+8x3+3.

    (a)   Find the stationary points.

    (b)   Determine the nature of each stationary point.

    (c)   Using your GDC draw the graph to verify the obtained results.

    Solutions:    Minimum: P1(1,1),  inflexion point: P2(0,3)
  4. The function has the equation:  f(x)=2x1x2.

    (a)   Find the zeros, vertical asymptotes and horizontal asymptote.

    (b)   Find the stationary points and determine their types.

    (c)   Hence draw the graph.

    Solutions:    (a)  Zeros: x1=12, vertical asymptote: x=0, horizontal asymptote: y=0;     (b)  maximum: P1(1,1)
  5. The function has the equation:  f(x)=x23xx2+3.

    (a)   Find the zeros, vertical asymptotes and horizontal asymptote.

    (b)   Find and classify the stationary points.

    (c)   Hence draw the graph.

    Solutions:    (a)  Zeros: x1=0, x2=3, no vertical asymptotes, horizontal asymptote: y=1;     (b)  maximum: P1(3,32), minimum: P2(1,12)
  6. The function has the equation:  f(x)=6x24x+6.

    (a)   Find the zeros and asymptotes, if any.

    (b)   Find and classify the stationary points.

    (c)   Hence draw the graph.

    Solutions:    (a)  No zeros, no vertical asymptotes, horizontal asymptote: y=0;     (b)  maximum: P1(2,3)
  7. The function has the equation:  f(x)=1+lnxx.

    (a)   Find and classify the stationary points.

    (b)   Using your GDC draw the graph to verify the obtained results.

    Solutions:    (a)  Maximum: P1(1,1)

Different types of inflexion points

  1. Find the points where y=0. Use your GDC to draw the graphs and investigate the behaviour of the functions.

    (a)   y=x33x2+3x

    (b)   y=x33x2+2x+1

    (c)   y=x33x2+4x1

    Solutions:    In all three cases y=0 at P1(1,1). These points are the inflexion points.
    In case (a) this point is also a stationary point  –  it's a stationary inflexion point.
    In cases (b) and (c) this point is not a stationary point  –  it's a non-stationary inflexion point.
  2. The function has the equation y=x36x2+9x.

    (a)   Find zeros.

    (b)   Find and classify the stationary points.

    (c)   Find and classify the inflexion points.

    (d)   Hence draw the graph.

    Solutions:    (a)  Zeros: x1=0, x2,3=3;     (b)  maximum: P1(1,4), minimum: P2(3,0);     (c)  non-stationary inflexion point: P3(2,2)
  3. The function has the equation y=19x4+49x3.

    (a)   Find zeros.

    (b)   Find and classify the stationary points.

    (c)   Find and classify the inflexion points.

    (d)   Hence draw the graph.

    Solutions:    (a)  Zeros: x1,2,3=0, x4=4;     (b,c)  minimum: P1(3,3), stationary inflexion point: P2(0,0), non-stationary inflexion point: P3(2,169)
  4. The function has the equation f(x)=12x2+3.

    (a)   Find the inflexion points.

    (b)   Write the equation of the tangent at the inflexion point with the negative abscissa.

    Solutions:    (a)  Inflexion points (both non-stationary): P1(1,3), P2(1,3);     (b)  tangent: y=32x+92

Powered by MathJax
Index

 Index