Index

Linear function

Straight line graph

  1. ?
    ?
    Equation of a linear function is usually written in the slope-intercept form (called also explicit form):

    f(x)=mx+c     or     y=mx+c
    Write down the gradient (m) and y-intercept (c) for the following linear functions:

    (a)   f(x)=2x5

    (b)   f(x)=x+3

    (c)   f(x)=3x

    (d)   f(x)=5

    Solutions:    (a)  m=2, c=5;     (b)  m=1, c=3;     (c)  m=1, c=3;     (d)  m=0, c=5
  2. Write down the gradient (m) and y-intercept (c) for the following straight lines:

    (a)   y=x

    (b)   y=12x+3

    (c)   y=12+x3

    (d)   y=3x212

    Solutions:    (a)  m=1, c=0;     (b)  m=12, c=3;     (c)  m=13, c=12;     (d)  m=14, c=16
  3. Write down the gradient (m) and y-intercept (c) for the following straight lines:

    (a)   x+y=2

    (b)   2x4y+1=0

    (c)   x3+y6=1

    Solutions:    (a)  m=1, c=2;     (b)  m=12, c=14;     (c)  m=2, c=6
  4. Draw the graphs of the following linear functions:

    (a)   f(x)=x+2

    (b)   f(x)=2x1

    (c)   f(x)=13x+1

  5. ?
    ?
    Equation of a linear function can be written in other forms, too:

    Implicit form: ax+by+c=0

    Double intercept form: xyab+yb=1
    Draw the following straight lines:

    (a)   y=x

    (b)   y=2x+3

    (c)   x2y4=0

    (d)   x3+y2=1

  6. Straight line has the equation y=3x5. Which of the following points lies on this straight line:

    (a)   A(2,1)

    (b)   B(3,15)

    (c)   C(25,80)

    (d)   D(76,32)

    Solutions:    (a)  lies;     (b)  doesn't lie;     (c)  doesn't lie;     (d)  lies on the given straight line
  7. A point has the coordinates P(3,2). Which of the following lines passes through this point:

    (a)   y=1x

    (b)   2x+3y=0

    (c)   2x5y13=0

    (d)   y=12x43

    Solutions:    (a)  passes;     (b)  passes;     (c)  doesn't pass;     (d)  doesn't pass through the given point
  8. ?
    ?
    Equation of a linear function passing through given points A(x1,y1) and B(x2,y2) can be written using the following formulas:

    m=y2y1x2x1    or    m=ΔyΔx

    yy1=m(xx1)
    Straight line passes through points A(1,2) and B(4,7). Write down the equation of this straight line.
    Solution:    y=3x5
  9. Straight line passes through points A(2,1) and B(7,5).

    (a)   Write down the equation of this straight line.

    (b)   Draw this straight line in the coordinate system.

    Solutions:    (a)  y=23x+13
  10. Straight line passes through points A(13,14) and B(43,12).

    (a)   Write down the equation of this straight line.

    (b)   Find the coordinates of the x-axis intercept.

    (c)   Draw this straight line in the coordinate system.

    Solutions:    (a)  y=34x12;     (b)  C(23,0)
  11. Straight line has the equation 4x+3y=24.

    (a)   Find the coordinates of x-axis intercept A and y-axis intercept B.

    (b)   Draw this straight line in the coordinate system.

    (c)   Calculate the length of the line segment AB.

    Solutions:    (a)  A(6,0), B(0,8);     (c)  AB=10
  12. Straight line has the equation x2y1.5=1.

    (a)   Find the coordinates of x-axis intercept A and y-axis intercept B.

    This straight line and both coordinate axes form a triangle ABO.

    (b)   Calculate the perimeter of the triangle ABO.

    Solutions:    (a)  A(2,0), B(0,32);     (b)  P=6
  13. Straight line has the equation y=x123.

    (a)   Find the coordinates of x- and y-axis intercepts.

    (b)   Calculate the area of the triangle formed by this line and both coordinate axes.

    Solutions:    (a)  A(12,0), B(0,4);     (b)  A=24

Parallel and perpendicular lines

  1. ?
    ?
    Condition of parallelism
    Straight lines are parallel if they have equal gradients:

    m2=m1
    Straight line 1 has the equation y=3x4. Write the equation of the straight line 2 which is parallel to 1 and passes through P(2,7).
    Solution:    y=3x+1
  2. Straight line 1 has the equation x6y+3=0.

    (a)   Find the gradient and the y-intercept of the line 1.

    (b)   Write the equation of the straight line 2 which is parallel to 1 and passes through the origin.

    Solutions:    (a)  m=16, c=12;     (b)  y=16x
  3. Straight line 1 has the equation x6+y4=1.

    (a)   Find the gradient of the line 1.

    (b)   Write the equation of the straight line 2 which is parallel to 1 and passes through P(3,1).

    Solutions:    (a)  m=23;     (b)  y=23x+3
  4. Straight lines 1 and 2 have the equations    1:  y=12x6    and    2:  y=mx2.

    (a)   Find m, given that 1 || 2.

    (b)   Find the area of the triangle formed by the line 2 and both coordinate axes.

    Solutions:    (a)  m=13;     (b)  A=6
  5. ?
    ?
    Condition of perpendicularity
    Straight lines are perpendicular if:

    m2=1m1
    Straight line 1 has the equation y=3x4. Write the equation of the straight line 2 which is perpendicular to 1 and passes through P(3,1).
    Solution:    y=13x+2
  6. Straight line 1 has the equation 8x+6y=5.

    (a)   Find the gradient of the line 1.

    (b)   Write the equation of the straight line 2 which is perpendicular to 1 and passes through P(2,4).

    Solutions:    (a)  m=43;     (b)  y=34x+52
  7. Straight line 1 has the equation y=43x163.

    (a)   Write down the coordinates of point M where line 1 intercepts the x-axis.

    Straight line 2 is perpendicular to 1 and passes through the same point M.

    (b)   Write the equation of the straight line 2.

    Straight line 2 together with both coordinate axes forms a triangle MNO.

    (c)   Write down the coordinates of point N.

    (d)   Calculate the area of the triangle MNO.

    (e)   Calculate the perimeter of the triangle MNO.

    Solutions:    (a)  M(4,0);     (b)  y=34x+3;     (c)  N(0,3);     (d)  A=6;     (e)  P=12
  8. Straight line segment has the endpoints A(2,2) and B(6,4).

    (a)   Find the midpoint M of this line segment.

    (b)   Write the equation of the straight line which is perpendicular to this line segment and passes through M.

    Solutions:    (a)  M(4,3);     (b)  y=2x+11
  9. Straight line segment has the endpoints A(2,6) and B(4,0). Find the equation of the perpendicular bisector of this line segment.
    Solution:    y=13x+2
  10. Find the equation of the perpendicular bisector of the line segment with endpoints P(1,2) and R(3,4).
    Solution:    y=23x+53

Powered by MathJax
Index

 Index