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Abstract

Despite a large ensemble of works on the relationship between the macroscopic cavitation structures 

and their erosive potential a study that would link individual cavitation events with specific damage has 

not yet been made. 

In the present study we attached a thin aluminum foil to the surface of a transparent Venturi section 

using two sided transparent adhesive tape. The surface was very soft – prone to be severely damaged 

by cavitation in a very short period of time. Using two high speed cameras we simultaneously recorded 

cavitation structures and the surface of the foil.  

Analysis of the results revealed that damage only occurs at cavitation cloud collapse, that the size of the 

cloud and it distance from the wall at collapse do not influence the extent of the damage and that an 

irregular or “broken” type of cavitation cloud causes the most damage to the foil. Also and probably the 

most important of all the study shows the sequence where one can see the separation and the collapse 

of cavitation cloud and the corresponding appearance of cavitation erosion.   

 

Key words: Cavitation, erosion, aluminum foil, high speed camera, Venturi section 

 

1 Introduction 

It is well known that cavitation can severely damage solid walls by removing material from the surface 

– almost a century ago Rayleigh [1] introduced the problem of cavitation erosion of the ship propellers. 

The phenomenon is complex as it includes both hydrodynamic and material aspects [2].  

 

From a hydrodynamic point of view, vapour structures are produced in the low pressure regions and are 

convected downstream. The difference in pressures inside and the outside of the fixed cavity causes the 

deviation of surrounding streamlines towards the solid wall. They then separate into outer flow, which 

reattaches to the wall and to the re-entrant jet, which causes a new separation of the cavitation cloud 

[2].    

 

Cavitation structures carry a significant amount of potential energy [3] and can, at their collapse, emit 

pressure waves of magnitude of several MPa [4]. Yet it seems that the cavitation cloud collapse itself 

cannot be the direct cause of erosion as its energy is not concentrated enough. Hence another or a 

number of other processes must be involved in the process of damage occurrence – some even question 

the importance of the cavitation cloud collapse – for example Chen & Israelachvili [5] suggested that 

the erosion occurs during cavity formation and not during its collapse.  
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As already mentioned, Hammitt [3] postulated that cavitation damage occurs once the potential energy 

contained in a cavity exceeds a certain damage threshold. This threshold is essentially a function of the 

material properties on which the erosive action takes place, and not of the type of cavitation [6].  

Currently the most widely accepted explanation of the phenomenon is that the potential energy 

contained in a macro cavity (cavitation cloud) is transformed into the radiation of acoustic pressure 

waves, and further on into the erosive power contained of the micro-scale cavitation structures or single 

bubbles that implode in the vicinity of the material boundaries. The approach, known as the “multiscale 

energy cascade”, was first used by Fortes-Patella et al. [7] and Bark et al. [8] to explain the damage 

occurrence.   

 

Despite a large ensemble of works on the relationship between the macroscopic cavitation structures 

and their erosive potential [9-13], a study that would link individual cavitation events (one cavitation 

collapse) with specific damage (single pit or a group of pits) has not yet been made. This is mainly due 

to the difficulty of the measurements – on one hand cavitation is a fast phenomenon where clouds 

separate and collapse at a rate of 10 to1000 times per second and on the other hand cavitation erosion is 

a relatively slow process– for 316L stainless steal the pitting rate lies between 1 and 100 pits/cm2/s 

[14]. Also, it is difficult, if not impossible, to see the surface that is being damaged as cavitation 

bubbles and clouds surround it. 

 

A study where cavitation structures and cavitation erosion would be simultaneously observed is also of 

a great interest for evaluation and further development of cavitation erosion prediction models (7, 15-

18]. This is a major issue since CFD predictions of cavitation erosion [7, 19] usually base on a very 

short flow simulation time and rely on erosion data obtained after a long exposure to cavitating flow 

(for example 38 ms of flow simulation time against erosion data obtained after 1 hour exposure to 

cavitation [19]).  

 

Quantification the cavitation erosive aggressiveness is a major scientific issue. Only very recently some 

methods for measuring the pressure peaks caused by bubble implosions were developed [20]. Still the 

most common method is the usage of soft metal (aluminum or copper) or paint coating of the 

submerged body as a sensor [21–25]. The erosion evaluation method, using the number, distribution 

and shape of the pits caused by bubble implosions gives us a relatively detailed knowledge of the flow 

aggressiveness.  
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In the present study we attached a thin aluminum foil to the surface of a transparent Venturi section 

using two sided transparent adhesive tape. The surface appeared polished and was very soft – prone to 

be severely damaged by cavitation in a very short period of time. Using two high speed cameras we 

simultaneously recorded cavitation structures (from the side view) and the surface of the foil (from the 

bottom view).  

 

Analysis of the results revealed that damage only occurs at cavitation cloud collapse, that the size of the 

cloud and it distance from the wall at collapse do not influence the extent of the damage and that an 

irregular or “broken” type of cavitation cloud causes the most damage to the foil. Also and probably the 

most important of all the study shows the sequence where one can see the separation and the collapse 

of cavitation cloud and the corresponding appearance of cavitation erosion.   

2 Experimental set-up 

Cavitation tests were performed in a cavitation tunnel at the Laboratory for Water and Turbine 

Machines, University of Ljubljana.  

 

2.1 Experimental set-up and the Venturi geometry 

The basic geometry was a 10 mm wide Venturi section with a converging angle of 18º and diverging 

angle of 8º (Fig. 1). The throat dimensions were 10�10mm2. The test section was made out of 

transparent plexi glass so that observation from all directions was made possible. Similarly the Venturi 

section was made out of ordinary glass which is, like plexi glass, transparent but also much more rigid 

what makes cavitation erosion on its much more aggressive. 

 

The cavitation tunnel (Fig. 2) has a closed circuit what enables to vary the system pressure and 

consequently the cavitation number (Eqn. 1), which is defined as the difference between the reference 

pressure p� (measured 200mm upstream of the Venturi throat) and vapour pressure pv (at system 

temperature T�) divided by the dynamic pressure (defined by the fluid density � and the flow velocity 

v): 

 

2

2
1 v

pp v

�
�

�
� �            (1) 
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Decreasing the cavitation number results in higher probability in cavitation occurrence or leads to an 

increase of the magnitude of the already present cavitation. 

 

Circulation of water is obtained with a 4.5 kW pump (1) that enables the variation of the rotation 

frequency in order to set the flow rate. At the pump delivery, a tank partially filled with the circulation 

water (2) is used for water heating (if necessary) and for damping the periodical flow rate and pressure 

fluctuations due to the passage of the pump blades. Cavitation and its effects are observed in a 

transparent plexi glass test section (3). The tank downstream of the test section (4) is used for cooling 

of the circulation water – cooling water flows inside the tank in a secondary loop which is connected to 

cold (14°C) tap water. Two valves (5 and 6) are installed upstream and downstream of the test section. 

These enable easy and fast disconnection of the test section from the main loop and also allow 

additional control of the flow rate. The volume flow rate is measured by electromagnetic flow meter (7) 

ABB WaterMaster V (DN 40) with a 2% uncertainty on measurements. Temperature is obtained with a 

type K thermocouple (8) which is directly in contact with the circulation water. The reference pressure 

is measured 200 mm upstream from the Venturi type section with a ABB  266AST pressure transducer 

(9). The uncertainty of the measurements was 8 mbar. The pressure in the test rig is adjusted in the 

partially filled tank (2) connected to a compressor (10) and a vacuum pump (11), which enables to vary 

the absolute pressure in this tank between 0.1 bar and 6 bar.  

The quality of water can significantly influence the erosion rate – lower gas content results in more 

aggressive cavitation [26]. To increase the aggressiveness of cavitation the water was degassed by 

running the test rig at a low pressure for 30 minutes. In order to assure repeatable measurements the 

quantity of the dissolved gases was measured by the Van-Slyke method [27] – according to [28, 29] the 

increase of the dissolved gases is proportional to the increase of the cavitation nuclei content. The gas 

content of 15 mg of gases per liter of water was constantly measured.   

 

The precisions of the pressure and velocity measurements result in a mean uncertainty of 3% for the 

cavitation number. 

 

The idea was to obtain sufficient damage in a very short period of time (1 to 2 seconds). Setting the 

flow velocity and the cavitation number by gradually adjusting the pressure and the flow rate was 

therefore made impossible (the foil would be severely damaged before we could start the image 

acquisition). To set the operating conditions, first the test rig pressure was set to a desired value 
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(454000 Pa, absolute pressure), then the valve upstream of the test section (5) was closed and the pump 

was switched on to a determined rotating frequency. As the valve (5) was rapidly opened the velocity 

increased from 0 to 24.7 m/s (the final Reynolds number based on the height of the Venturi throat was: 

Re = 247000) in about 0.05 s. Figure 3 shows the evolution of the mean attached cavitation length 

during the experiment as a function of time. In the images of cavitation, the flow is from the right to the 

left, the bottom of the Venturi in on the top of the image and the region of interest extends over 

approximately 20x100 mm (see also Fig 5).  

 

The desired operating conditions are achieved about 0.05 s after the first bubbles are seen. The 

cavitation than rapidly grows and exhibits the first cloud separation just 0.02 s after it first appeared. 

Looking at the transient one would expect the pitting rate to change during the first 0.1 s. Yet this 

proved to be practically unmeasurable (Figs. 8, 9 and 11) since the transition phase is very short (only a 

few cloud separations and collapses occur during the transient).  

2.2 Aluminum foil as an erosion sensor 

The idea of the experiment was to simultaneously record images of cavitation structures and cavitation 

erosion. The upper side of the foil is covered by vapour structures that obstruct the view, hence one 

needs to look at the foil from the bottom side to see the damage. Consequently the whole test section 

had to be made of transparent material and equally important the foil had to be thin enough so that the 

cavitation damage which occurs on the side exposed to cavitation was also visible on the other side. 

Furthermore the damage needs to occur very rapidly – if possible at every cavitation cloud collapse so 

that one is able to record it by high speed cameras.      

We have chosen 10 �m thick aluminum foil and attached it to a Venturi section by a transparent two 

sided adhesive tape with thickness of 50 �m (Fig. 4). The Venturi section itself had to be made out of 

ordinary glass which is more rigid than the plexi glass – if the former was used practically no damage 

was recorded even after a long exposure to cavitation (1 hour).   

The Venturi section which was prepared in the same way as for the experiments was tested for hardness 

- a value of only 0.4 HB was repeatably obtained.  
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2.3 Image acquisition

Two cameras were used in the experiment. For observation of the aluminum foil we used a high speed 

camera Fastec Imaging HiSpec4 2G mono which can capture images at 523 fps at 3Mpixel resolution. 

For capturing the cavitation structures from the side view we used high speed camera Motion Blitz 

EoSens mini 1 which can record at 506 fps at 1Mpixel resolution. For the present experiment the 

cameras were synchronized and recorded at 6000fps at a reduced resolution.

The regions of interest for the two cameras can be seen in Fig. 5. Images of cavitation were recorded at 

a resolution of 672�135 pixels and the images of the foil at a somewhat higher resolution of 1280�150 

pixels. One pixel in the images of cavitation structures corresponds to 0.133 mm (the region of interest 

extends over approximately 90�18 mm). For the images of the foil the pixel size is 0.062 mm (the 

region of interest extends over 80�10 mm and begins 5 mm downstream of the throat of the Venturi).  

2.4 Damage evaluation

Since we are observing the foil with a camera only the surface of the damaged area can be accurately 

measured. The volume of the pits could only be estimated using rough assumptions [30].  

For evaluation we used an approach that combines several evaluation procedures used before (11, 31, 

32).  

We evaluated the images in pairs – the image at the time t was subtracted from the image at time t+�t, 

thus eliminating most of the surface and illumination imperfections. Then we employed the pit-count 

method [11] which determines the pits from the darker regions in an image, while the brighter area is 

assumed to be undamaged surface – from each image pair we obtained the number and the area of 

newly appeared pits.  

 

The pit-count method gives a distribution of the number and the area of the pits and consequently, the 

distribution of the magnitude of cavitation erosion on the surface. We can also determine the 

distribution of the size of the pits. Since we were comparing pairs of two successive images we were 

also able to consider the possibility of pit overlapping (Fig. 6).  

  

Images of the aluminum foil were treated as matrixes with i�j (1280�150) elements 

(A(i,j)�{0,1,…255}) with values which can range from 0 (black) to 255 (white).  

Erosion was evaluated in image pairs: image matrix at time t+	t was subtracted from image matrix at 
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time t (B(i,j,t)= A(i,j,t) - A(i,j,t+	t)). This way a new matrix B was obtained. When the matrix element 

B(i,j) did not change between times t and t+	t its value was 0 (B(i,j,t)=0). When change occurred the 

value was B(i,j,t)�0. Since small changes could be present due to insignificant changes in illumination, 

vibration etc., damage was only considered when a certain change threshold was exceeded (B(i,j,t)>12; 

this corresponds to more than 5% of decrease in brightness – pits always appeared as dark regions). 

The number of the pits, their size and overall damaged area could then be easily determined.  

3 Results 

Figure 7 shows a sequence where cavitation structures and the images of the aluminum foil are 

presented. The sequence starts 0.1045s after the cavitation first appears (some damage can already be 

seen from previous collapses) and shows one cavitation cloud collapse and rebound (last image). The 

flow is from the right to the left, flow velocity in the throat is v=24.7m/s and cavitation number is 

�=1.48.   

 

Cavitation cloud shedding begins with the cloud separation from the attached cavity. It then travels 

with the flow and collapses in a higher pressure region downstream. At the rear part of the attached 

cavity a back flow (re-entrant jet) forms that eventually cuts the cavity in two and causes a new 

separation of the cloud [2].  

We can see that pits form immediately after the collapse of the cavitation cloud (in the present sequence 

we have two clouds that collapse at t=0.10500 s and 0.10517 s, respectively). It can also be seen that 

the region where most of the pitting occurs corresponds to the position of the cloud collapse. It is 

interesting to see that not a single pit forms but rather a cluster of them. We hypothesize that the shock 

wave from the cavitation cloud collapse interacted with several bubbles which were present in the 

vicinity of the wall (aluminum foil).  

It also points to the idea of the cascade explanation of cavitation erosion process, which states that the 

damage occurrence is a consequence of a chain of events – for example according to Fortes-Patella et 

al. [7]: cavitation cloud collapse, shock wave generation, spherical micro-bubble collapse and shock 

emission and finally pit formation. Or in the case of Dular et al. [11]: cavitation cloud collapse, shock 

wave generation, micro-jet collapse of bubble in the vicinity of the wall, and finally the damage 

occurrence due to high velocity liquid jet impact to the solid surface.  

 

In Fig. 8 the damage to the aluminum foil after different times of exposure to cavitation is shown. The 
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flow is from right to the left (the right boundary of the images lies 5 mm downstream of the throat of 

the Venturi – see also Fig. 7).  

Within the first 0.1 seconds of exposure to cavitation the foil sustained damage in two regions – a few 

pits about 30 mm downstream of the throat of the Venturi and somewhat more damage further down – 

about 55 mm from the throat. Later on the damage in the region close to the throat of the Venturi (at the 

right side of the images) does not increase at the same rate as in the region downstream. This  is due to 

the procedure of the experiment – as the valve was opened the velocity increased from 0 to 24.7 m/s 

and the cavitation grew (Fig. 3). Since cavitation was small at the beginning also the damage was not 

that severe and it occurred in the region close to the throat (<35mm) – nevertheless since the cavitation 

rapidly grows and exhibits cloud separation just 0.02 s after it first appears, a deviation of the pitting 

rate during the first 0.1 s is practically unmeasurable. When the cavitation fully develops (after 0.05 s, 

Fig. 3) cloud collapses occur further downstream and the region near the Venturi throat (the first 20 

mm) remains almost intact until the end of the measurement. The damage, in the region where the 

clouds collapse, increases gradually till the end of the experiment what corresponds to the findings of 

Osterman et al. [33], who measured linear trend during the incubation period. 

 

We can plot the number of pits and the whole damaged area as a function of time. When we calculate 

the two parameters we also need to consider the possibility of overlapping of the pits. At every time 

two successive images of the damaged surface are compared, this way it is possible to determine if a 

single damaged region corresponds to more than one pit. Also in the right diagram (Fig. 9) instances 

where the cloud collapse occurred are noted.  

From the left diagram in Fig. 9 one can see that the pitting rate does not vary significantly during the 

length of the experiment (apart from the first 0.02 s when the cavitation was not fully developed). Both 

the area and the number of pits grow linearly at about 20 mm2/s and 2200 pits/s (or as a function of the 

analyzed area: 2.5 mm2/cm2/s and 275 pits/cm2/s), respectively. More interesting is the diagram on the 

right. When we close in to a detail we see that the evolution is in fact not linear but rather stepwise. The 

dotted lines denote the instances of cavitation cloud collapse. It is obvious that they relate perfectly to 

the appearances of the damage. The cloud collapse is not instantaneous, hence the damage appears both 

prior and after the main cloud implosion. Still, this confirms the hypothesis that the cloud collapse is a 

needed condition for the erosion appearance as the foil does not sustain any damage during the rest of 

time. 
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The diagrams in Fig. 10 show the average pit size during the experiment (left) and histograms of pit 

size distribution (middle) and the contribution to the whole damaged area of the pits of a specific size 

(right) by the end of the experiment. 

 

It is interesting to see that the pit size does not vary significantly during the experiment. The average 

area of the pit remains almost constant at about 0.009 mm2, what corresponds to a circular pit with a 

diameter of 0.11 mm. The temporal variations of the size are below the one pixel resolution. This gives 

another proof of the linear increase of the damage during the incubation period. More importantly the 

result also implies that the small imperfections of the pitted surface did not influence the pitting later 

on.  

 

The left histogram shows that the majority of the pits are small (area < 0.05 mm2) – only a few large 

pits (area > 0.05 mm2) form during the experiment. Also we see, from the right histogram, that larger 

pits do not contribute significantly to the whole damaged area.  

 

Similarly to the acoustic cavitation where Dular & Osterman [31] reported that the pits tend to form 

erosion clusters this was also observed in the present experiment. One can see that area of the foil that 

was damaged by the erosion extends to about 12.7 mm2 (Fig. 8 at 1.483 s), yet the whole area of the 

pits sums up to 28.8 mm2 (maximal value of the in Fig. 9, left). This implies a very high level of 

overlapping. One can examine the clustering in detail by plotting a histogram that shows the number of 

deformations that formed a single pit as seen by the end of the experiment (Fig. 11).  

 

We can see that the majority of the pits (83%) damaged the virgin material – they are formed during a 

single cavitation event. However, in very rare cases (10 pits), a single pit was damaged more than 10 

times by the end of the experiment. Such a high level of very local overlapping or clustering can 

probably be related to the very soft, and therefore specific, nature of the material.  

 

One also needs to question the repeatability of the measurements. Figure 12 shows the number of pits 

and integral damage extent as a function of time for 4 additional experiments which were conducted at 

the same conditions as the first one (v=24.7m/s, p=454000 Pa, �=1.48). Also the damage after 0.8 s 

exposure to cavitation for all 5 cases are presented.  
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Cavitation is a random phenomenon, hence large discrepancies between the experiments were expected 

(for example Test no. 2 between 0.2 and 0.6 s). However both, the damaged surface area and the 

distribution of pits after the termination of the experiment, do not significantly differ from one 

experimental run to another. We can conclude that the properties of the aluminum foil, its application to 

the Venturi geometry as well as the flow conditions were repeatable.     

 

4 Relationship between the cavitation structures and erosion  

We investigated three parameters that could form a relationship to the damage extent: the distance of 

the cloud from the foil at its collapse, the volume of the cloud and the structure of the cloud just before 

the collapse.  

 

The distance of the cloud collapse from the wall could be easily measured from the side view image of 

cavitation cloud just before it collapses.  

The volume of the bubble cloud at the instant when it separates from the attached part of the cavity 

could only be approximated as we did not measure the void fraction. From the side view images we 

determined the boundary of the cloud and measured its area. In the present experiment the clouds are in 

essence two dimensional what can be seen from the top view images (Fig. 13). The approximate could 

volume can then be easily determined by multiplying the area by the width of the channel (10 mm).   

 

Results that show the relationship between the damaged area caused by a specific cloud collapse, the 

distance of the cloud from the foil at its collapse and the volume of the cloud size at its separation from 

the attached cavity are presented in Fig. 14.   

 

We can see that neither the distance at which the cloud collapses nor the volume of the cloud play a 

significant role for the erosion process. This is somewhat unexpected – for example Dular et al. [17] 

included the distance of the cloud collapse in his cavitation erosion model. Similarly Preira et al. [9] 

reports that the volume of the cavitation cloud significantly influences the aggressiveness of cavitation 

erosion.  

We hypothesize that the reason for not finding a clear relationship between the distance of the cloud 

collapse and the damaged volume, is a result of the nature of how the shock wave, which is emitted at 

cloud collapse, is attenuated. Its magnitude decreases exponentially by the distance it travels [17], but 

since the compressibility of the water is very low it remains practically unchanged regardless the 

distance that it traveled (2 or 12 mm).    
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From the work of Wang & Brennen [4] one can conclude that collapses of larger cavitation clouds with 

the same inner structure should produce shock waves with higher magnitude, consequently causing 

more damage to the surface of the Venturi section. The reason that we did not find this straightforward 

relationship lies in the fact that, as already mentioned, the cavitation erosion process is made out of a 

sequence (cascade) of events. The shock wave that is emitted at cloud collapse does not damage the 

surface directly – it influences the individual bubbles that are in the vicinity the wall, which then 

implode and form a pit. It seems that the number and the distribution of the single bubbles in the 

vicinity of the wall have a mayor role in the process of cavitation erosion.    

Another possible explanation was recently suggested by van Rijsbergen et al. [34]. Based on acoustic 

emission measurements they came to a similar conclusion – that not all cloud implosions lead to 

impacts on the nearby surface. They hypothesize that, that the shock waves are not perfectly spherical 

and have a clear orientation – the highest impact occurs when the wave front is directed toward the 

wall.   

 

Finally we investigated the structure of the cloud 0.33 ms prior to its collapse. Figure 15 shows three 

images of the clouds which caused small damage (left) and three which caused extensive damage 

(right). The value of the area, which is written in the images corresponds damage that the foil sustained 

from this specific cloud collapse. 

 

We see that the clouds that caused extensive erosion appear to be “broken” and asymmetrical. We 

believe that the “broken” structure of the cloud causes shedding of many individual bubbles which can 

later cause the damage to the material (according to the cascade approach). When the clouds are 

symmetrical (round shaped) as the ones in the left column in Fig. 15 the collapse may be more violent 

but there are simply not enough single bubbles in the vicinity of the wall which could damage the 

material. This again proves that it is the number and the distribution of the single bubbles which is the 

most influential parameter in the process of cavitation erosion.    

4 Conclusions 

A study of simultaneous observations of cavitation structures and cavitation erosion was presented. By 

using a thin aluminum foil, which we observed from the side which was not exposed to cavitation we 

were able to relate individual cavitation cloud collapses to individual cavitation erosion pits that formed 

on the foil.  

The most important conclusions that can be drawn from the study are: 
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1. Cavitation cloud collapse is evidently the needed condition for cavitation damage occurrence – 

no erosion was found during the period of cavitation growth and separation. The cavitation 

cloud shedding, however, does not need to be strictly periodic for cavitation to be aggressive 

[9]. 

2. Provided that the cavitation cloud collapse occurs, the distance of the cloud from the foil at its 

collapse and the volume of the cloud do not influence the extent of the damage.  

3. It is the topology of the cloud just before its collapse that plays a major part in the process of 

erosion.  

4. The cascade approach to the explanation of cavitation erosion process is valid.  

 

There are two possible explanations to why an irregular (non circular) or “broken” cavitation cloud 

causes more erosion. It either sheds more individual bubbles which later on implode and cause more 

extensive damage or, according to van Rijsbergen et al. [34], it influences the orientation of the shock 

wave which turns toward the surface. 
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Figure captions 

 

Fig. 1:  The Venturi geometry and the directions of observation. 

 

Fig. 2: The experimental setup. (1) Pump, (2) upstream tank, (3) test section, (4) downstream tank, (5 

and 6) valves,  (7) electromagnetic flow meter (7), (8) thermocouple, (9) pressure sensor, (10) 

compressor and (11) vacuum pump. 

 

Fig. 3: The evolution of the mean cavitation length during the experiment. t=0 s corresponds to the first 

appearance of cavitation. 

 

Fig. 4: The foil applied to the Venturi section. 

 

Fig. 5:  Image of cavitation and the foil in respect to the position of the Venturi. 

 

Fig. 6:  Manipulation of the images of the damaged surface. From each image pair we obtained the 

number and the area of newly appeared pits (at t+�t). 

 

Fig. 7: Instantaneous image of the aluminum foil (top images), measured damage of the foil up to this 

instant (middle images) and instantaneous image of cavitation (bottom images). 

 

Fig. 8: The damage after every 0.1 s exposure to cavitation. 

 

Fig. 9:  The number of pits and integral damage extent as a function of time. Left - the whole length of 

the experiment, right - a short time interval during the experiment (with noted instances of cavitation 

cloud collapse). 

 

Fig. 10:  Average area of the pit during the experiment (left) and histograms of pit size distribution 

(middle) and the contribution to the whole damaged area of the pits of a specific size (right). 

 

Fig. 11:  Number of deformations that formed a single pit as seen by the end of the experiment. 

 

Fig. 12:  Study of the repeatability of the experiments: The integral damage extent as a function of time 
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(left), damage extent after 0.8 s exposure to cavitation (right). 

 

Fig. 13: Determining the volume of the cavitation cloud. 

 

Fig. 14: Relationship between the damaged area caused by the cloud collapse, the distance of the cloud 

from the foil at its collapse and the volume of the cloud size at its separation from the attached cavity. 

 

Fig. 15: Cavitation clouds 0.33 ms prior to the collapse with noted damage extents. Small damage (left) 

extensive damage (right). 
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Highlights 

 


 We simultaneously recorded cavity collapse and damage occurrence 


 The distance of the cloud at its collapse does not influence the extent of the damage.  


 The volume of the cloud does not influence the extent of the damage. 


 Erosion significantly depends on the topology of the cloud just before its collapse. 


 The cascade approach to the explanation of cavitation erosion process is valid.  
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