ADVANCEMENTS IN LATENT CLASS ANALYSIS: A PRACTICAL ORIENTA-TION

Jacques Hagenaars Marcel Croon Jeroen Vermunt

Department of Methodology/WORC
Faculty of Social Sciences
Tilburg University
P.O. Box 90153
5000 LE Tilburg
The Netherlands

email jacques.a.hagenaars@kub.nl phone +31.13.4662086

The Sixth Annual Lecture in Social Statistics ISP0M, K.U. Brussels
June 8-11, 1999

LATENT VARIABLE MODELS

Latent ⇒ **Not** (directly) **Observed**

- true value, scaling model, latent structure model
- clustering, underlying typologies
- unobserved heterogeneity, random coefficient models, multi-level models
- random and systematic misclassifications and errors
- missing data

LATENT STRUCTURE MODEL

NOTATION

W, X, Y, Z: latent variables

A, B, C, D: manifest variables

BASIC MODEL

X	A	$\mathbf{e}_{\mathbf{A}}$
	В	$\mathbf{e}_{\mathbf{B}}$
	C	$\mathbf{e}_{\mathbf{C}}$
	D	$\mathbf{e}_{\mathbf{D}}$

- latent and manifest variables
- local independence
- error term, probabilistic relation latent-manifest

TYPOLOGY OF LSA

LATENT

nominal ordinal interval

nominal lca ltr.

MANIFEST ordinal olca

interval lprof fa

in addition: continuous versus discrete

estimated versus fixed scores

link between latent/manifest

'general' (categorical) lca: in all cells

BASIC LATENT CLASS ANALYSIS

Essential responsibility of government towards $(1 = yes \ 2 = no)$:

A - equal rights men/women

B - good education

X

C - good medical care

D - equal rights guest workers

ABCD	ABCD		ABCD		ABCD	
1111 59	1211	7	2111	<i>75</i>	2211	8
1112 50	1212	<i>15</i>	2112	<i>161</i>	2212	<i>68</i>
1121 14	1 2 2 1	4	2121	<i>22</i>	2221	<i>22</i>
1122 36	1222	23	2122	115	2 2 2 2	145

N = 808

X is categorical and unobserved; one has to determine number of latent categories (classes)

A - equal rights men/women

B - good education

 \mathbf{X}

C - good medical care

D - equal rights guest workers

$$\pi_{a\,b\,c\,dx}^{ABCDX} = \pi_{x}^{X} \pi_{a\,x}^{A|X} \pi_{b\,x}^{B|X} \pi_{c\,x}^{C|X} \pi_{d\,x}^{D|X}$$

$$\pi_{abcd}^{ABCD} = \sum_{x} \pi_{abcdx}^{ABCDX}$$

$$\pi_{abcdx}^{ABCDX} = \eta \tau_a^A \tau_b^B \tau_c^C \tau_d^D \tau_x^X \tau_{ax}^{AX} \tau_{bx}^{BX} \tau_{cx}^{CX} \tau_{dx}^{DX}$$

$$\ln \pi_{abcdx}^{ABCDX} = \Phi + \lambda_a^A + \lambda_b^B + \lambda_c^C + \lambda_d^D + \lambda_x^X + \lambda_{ax}^{AX} + \lambda_{bx}^{BX} + \lambda_{cx}^{CX} + \lambda_{dx}^{DX}$$

{AX,BX,CX,DX}

A- equal rights men/women

B - good education

C- good medical care

D- equal rights guest workers

X A B C D
1 2 1 2 1 2 1 2
1 .41 .40 .60 .95 .05 .85 .15 .46 .54
2 .59 .17 .83 .47 .53 .35 .65 .12 .88
$$\lambda_{11}^{AX} = 0{,}303 \quad \lambda_{11}^{BX} = 0{,}772 \quad \lambda_{11}^{CX} = 0{,}590 \quad \lambda_{11}^{DX} = 0{,}464$$

$$L^2 = 13.99 df = 6 p = .03$$

 $X^2 = 13.97$

INTERPRETATION

• TESTING 'usual' chi-square statistics (L², X²,

BIC); also $L^2_{r/u}$ (NOT for X=2 vs X=3)

• MODIFYING MODELS inspect residuals; inspect 'loadings'; more latent classes; more latent variables

ESTIMATION

- Maximum Likelihood Estimates; (product)multinomial sampling
- Table ABCDX is not observed (X is latent)
- EM, NR, etc.
- EM: initial estimates $\hat{\pi}_{abcdx}^{ABCDX}$
 - E-step: $\hat{p}_{abcdx}^{ABCDX} = \hat{\pi}_{xabcd}^{X|ABCD} p_{abcd}^{ABCD}$
 - M-step: 'fit' appropriate model (AX,BX,CX,DX) to \hat{p}
 - repeat E- and M-step, using latest 'up-dates' untill convergence

PROBLEMS: - local/global maxima

- 'terminal' estimates (boundary -)
- identifiability: necessary and sufficient conditions

RESTRICTED MODELS

$$\Pi_x^X = c$$

$$\pi_{ax}^{A|X} = 1 = 0 = c$$

$$\pi_{11}^{A|X} = \pi_{22}^{A|X}$$

$$\pi_{ix}^{A|X} = \pi_{ix}^{B|X}$$

$$\tau_{ix}^{AX} = \tau_{ix}^{BX}$$

linear/ordinal restrictions on λ_{ax}^{AX}

TWO LATENT VARIABLE MODEL

A - equal rights m/w

Y

D - equal rights g.w.

B - good education

Z

C - good medical care

$$\lambda_{11}^{YZ} = 1.136$$

$$\lambda_{11}^{AY} = 0.393 \quad \lambda_{11}^{DY} = 0.663$$

$$\lambda_{11}^{BY} = 0.776 \quad \lambda_{11}^{CY} = 0.619$$

$$L^2 = 5.76 df = 4 p = .22$$

 $X^2 = 5.75$

LATENT (CLASS) SCORES

Determine modal latent class x*, given observed scores

$$\pi_{x*\ abcd}^{X|ABCD}$$

Assign all respondents to their modal class

Error measures

$$\epsilon_{abcd}^{ABCD} = 1 - \pi_{xabcd}^{X|ABCD}$$

$$E = \sum_{a,b,c,d} (\pi_{abcd}^{ABCD} \epsilon_{abcd}^{ABCD})$$

$$\lambda_{X|ABCD} = [(1 - \pi_{x*}^{X}) - E]/(1 - \pi_{x*}^{X})$$

Identifiability of latent scores Biased latent scores

COMPARATIVE ANALYSES

Nation, Time, Group are just (independent) variables

Main Issue: Comparability of Measurement Model

Relevant Models

{GAX,GBX,GCX,GDX}

{GX,AX,BX,CX,DX,GA,GB,GC,GD}

{GX,AX,BX,CX,DX}

{G,AX,BX,CX,DX}

Differences between parametrizations in terms of the loglinear parameters or the response probabilities