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1 INTRODUCTION  

 
IOptLib (an abbreviation for Investigative Optimization Library) is an open optimization 

library designed to sustain development and testing of algorithms for solving practical optimization 
problems. The library is implemented in ANSI C but should be easy to make interfaces for use with 
other programming languages such as C++, Pascal and Fortran. A priority goal is to develop 
algorithms suited to problems with computationally expensive and possibly noisy evaluation of the 
response (i.e. objective and constraint) functions. The library is intended to provide modular 
building blocks for constructing such algorithms, standardized templates for interfacing tools 
obtained form other libraries, and testing environment where different performance aspects of 
algorithms can be readily extensively tested during and after the development stage. Currently most 
of the efforts are devoted to algorithms based on successive solution of approximated problems 
obtained by local sampling and approximation of the response functions. Such algorithms have 
complex designs and involve solution of many sub-problems such as non-linear or quadratic 
programming problems, matrix algebra, optimal sampling strategies, etc. The intention is therefore 
to gradually accumulate efficient routines for solving these problems, which will lead to broader 
serviceability of the library. Any attempt was made to keep open the possibility of starting 
development of new algorithms or attaching to the existent functionality at any level. The basic 
library is therefore intended to be distributed as free open source under certain conditions. A couple 
of algorithms will be available under different negotiable terms since this is necessary to provide 
the funding for library development, however their building blocks together with a set of quite 
useful algorithms will be provided with the basic set that is more open what concerns availability. 

 
The original motivation for the library was obtained in optimization of forming processes 

where evaluation of objective and constraint functions typically involves complex numerical 
simulation with hundreds of thousands of degrees of freedom, very non-linear and path dependent 
materials, multi-physics and multi-scale phenomena etc. As result, not only the calculation of the 
objective and constraint functions takes very long times even on the fastest computers or parallel 
architectures, but these functions often contain substantial amount of numerical noise. These 
conditions impose a substantial turn in how algorithm performance is viewed. On one hand the most 
important measure of algorithm efficiency becomes the number of function evaluations it takes for 
calculating optimum up to a given accuracy. The CPU time spent by the algorithm becomes 
somehow less important because function evaluations will normally require incomparably more 
computational time. Because running optimization procedures will often be just on the limit of 
affordable, the goal will not always be to find an optimal solution up to a specified accuracy, but 
rather to achieve significant improvement within an affordable computational time.  

 
The targeted scope of the library is beyond the area of its original motivation. It is intended 

to provide a pool of algorithms for different problems and facilities for extending this pool. Beside 
that, interaction with other libraries and use of the library in existing or future software is accounted 
for as much as possible. A lot of stress is put on defining standard data types and function 
prototypes used for different purposes, such as evaluation of response functions and their 
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derivatives or for storing results of such evaluation and their use in building approximations. These 
standards are defined in such a way that routines for similar tasks from other libraries can be easily 
incorporated in the system, and functions that are consistent with library standards can be easily 
exported in standard forms required in other software environments. Wrapping functions and data 
converters are provided some common cases, and the way how one can create own tools for this is 
described in this manual. These standards are defined in such a way that routines for similar tasks 
from other libraries can be easily incorporated in the system, and functions that are consistent with 
library standards can be easily exported in standard forms required in other software environments. 
This part of library design is described in Subsection 2.3.1. 

 
The entire Section 2 contains a short overview of the library. This begins with availability 

information and informative overview of library contents in Section 2.2. 
 
The library comes with a set of basic utilities that are extensively used in implementation of 

basic building blocks and algorithms. This includes e.g. basic matrix and vector operations and 
generic implementation of data containers such as stacks. These utilities are well documented in 
source code, and Subsection 2.3 provides some information for easier navigation. Various sets of 
building blocks developed for construction of algorithms are described in Section 3 and a short 
overview of the algorithms provided with the library is given in Section 6.  

 
Many of elementary utilities make use of other free libraries, which are listed in Section 9.5. 

Contribution of people who designed and implemented these libraries and made them available is 
gratefully acknowledged. 

 
 
 

Notice:  
This manual is incomplete and has currently some true gaps that could alone render correct 

usage of the library impossible. However, these gaps should be easily overcome by a look at the 
source code. This is especially true because source code is relatively well documented, in particular 
each important function has an introductory comment that specifies the meaning of its arguments 
and what the function does. 

Of course, you will sometimes need appropriate tools to search for function definitions and 
type declarations. Integrated development environments are ideal for such tasks, but file browsing 
and searching utilities that are nowadays provided by every reasonable operating system will also 
do the job satisfactory.  

 
 
 
 Legend of graphic symbols:  

 

 - this section / paragraph / text is not yet complete. Since nothing can be considered 
definite or complete at a library like “IOptLib”, this sign will denote portions of this 

Comment [a1]: Change this 
notice when a closed form of the 
manual is achieved! 
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manual where more content is intended at this very moment, but there was no time to add 
it. 

 - Developers’ section – these contents will be of more interest for developers of the library 
than its users. To define the terms – users of the library “IOptLib” will usually be 
developers of some other software. In this document, term “developers” is used for those 
who contribute to the library itself, i.e. people who add functionality and make it publicly 
available, who suggest conceptual changes or who contribute free additional 
documentation for the benefit of other users and developers.  

 - Consideration.  

 - Warning.  
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2 BASICS 

 

2.1 Preliminaries 

 
Primary subject of this library are tools for solution of nonlinear optimization (non-linear 

programming or NLP) problems, which can be formulated as 
 
minimise  ( ) nf RI, ∈xx   

subjected to  ( ) Eici ∈= ,0x  (1) 

and  ( ) Ijc j ∈≤ ,0x   

 
x is the vector of optimization (or design) parameters. Function f is called the objective function 
(merit function, fitness function, cost function and other names are also in use) and ci and cj are 
constraint functions that define the feasible domain, i.e. the set of admissible points in the design 
space. E is index set defining the set of equality constraints and I is the set defining inequality 
constraints. Objective and constraint functions are collectively referred to as response functions or 
simply response1. 

 
Calculation of the objective and constraint functions will be referred to as direct analysis or 

simply analysis. 
 

2.2 Availability and Contents  

 
 
 
 

2.3 Basic Data Types and Function prototypes 

 

                                                 
1 The term numerical response will be used sometimes to emphasize that the response functions are calculated by a 
numerical simulation. Similarly, the term numerical analysis will sometimes be used for analysis. 
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2.3.1 Standard analysis function 

By the term analysis we mean calculation of the response (i.e. objective and constraint 
functions) from (1), which define the optimization problem.  

 
In the source code of optimization programs or libraries, there are usually one or more 

analysis functions for calculating the response. Optimization functions, which implement 
optimization algorithms for solution of (1), iteratively call the analysis functions to evaluate the 
response at different parameters, until convergence is achieved. Usually the analysis functions are 
passed as argument to the optimization functions, therefore each implementation of some 
optimization algorithm requires a specific type of analysis functions1. If we want to connect 
optimization algorithms implemented in some library with analysis functions of incompatible type, 
we must first implement a suitable interface by defining a wrapping functions, which are of 
compatible type and call the original analysis functions to evaluate the results. 

 
In order to make interfacing between different libraries and software and development of 

building blocks as easy as possible, the library makes use of standard analysis function type. It is 
declared as 

 
typedef  
  int (* analysis_bas_f) ( 
      vector param,int *calcobj,double **addrobj, 
      int *calcconstr,stack *addrconstr, 
      int *calcgradobj,vector *addrgradobj, 
      int *calcgradconstr,stack *addrgradconstr,voi d *cd); 

 
This definition is enough general and suitable for many special cases, e.g. where constraints 

can be calculated separately or not from the objective function, or where calculation of response 
gradients represent considerable or only minimal additional effort with respect to sole calculation of 
values. Since practically every library user will have to define analysis functions of this type in 
order to use library functionality, a detailed description is given below. However, knowledge of all 
the rules described below is not really necessary since library users can help themselves by some 
tools prepared to aid defining analysis functions and use existing examples as templates. This is 
described in subsection 2.3.2. 

 

Table 1: Meaning, types and dimension of arguments of the standard analysis functions. 
(type analysis_bas_f). In the table below, integer numbers numparam , numconstraints and 
numobjectives denote number of parameters, number of constraints and number of objective 
functions (only 0 or 1 are possible), respectively.  

 
Argument Meaning Remarks 
vector param Vector of design 

parameters. 
In general, it must be allocated with correct dimension, i.e. numparam. 

Flag pointers Input/output. Define 
what to evaluate and 

Input/output. Pointer to non-zero value means that evaluation is 
requested, NULL or pointer to 0 means evaluation is not requested. 

                                                 
1 Type of a function is defined by required types of its arguments and return value. 
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inform what has been 
evaluated.  

Output (when evaluation is requested): if evaluation is requested then 
pointed value is set to 0 if evaluation or return of corresponding results 
could not be done or if the corresponding response is not defined in the 
problem corresponding to the analysis function. 

int *calcobj Objective function 
evaluation. 

Requests evaluation of the objective function. 

int *calcconstr Constraint functions 
evaluation. 

Requests evaluation of constraint functions (all in a package). 

int *calcgradobj Evaluation of 
gradient of the 
objective function. 

Requests evaluation of the gradient of the objective functions. 

int *calcgradconstr Evaluation of 
gradients of 
constraint functions. 

Requests evaluation of gradients of constraint functions. 

Storage addresses Define address for 
storage of calculated 
response 

Output. For each type of response there is an argument specifying storage 
address. Arguments must not be NULL when evaluation of given 
response is requested (but may be NULL when it is not). Storage is 
allocated/reallocated by the analysis function when necessary and kept 
untouched when evaluation of corresponding response is not required. 
When a given kind of response is requested but it is not defined, the 
storage would be untouched, but corresponding flag would be set to 0. 

double **addrobj Objective function 
storage. 

**addrobj is set to the value of the objective function. *addrobj is set to 
NULL when objective function is not defined. 

stack *addrconstr Storage for constraint 
functions. 

Stack holds numconstr elements of type double *, which hold values of 
constraint functions. 

vector 
*addrgradobj 

Storage for objective 
function gradient. 

Vector of dimension numparam, elementa are components of the 
objective function gradient. 

stack 
*addrgradconstr 

Storage for gradients 
of constraint 
functioins. 

Stack of numconstr elements of type vector. Vectors are of dimension 
numparam and hold gradients of individual constraint functions. 

Definition data Additional exchange 
of information. 

Intended for different roles: precise definition of analysis response (e.g. 
coefficients of quadratic objective functions), may be used for data 
transfer between the algorithm, analysis and user (state & requests), 
seamless upgrade of analysis (e.g. non-derivative analysis upgraded by 
numerical differentiation) etc. 

void *cd  Input and/or output, not compulsory. Type and structure of the pointed 
data is arbitrary, it is interpreted within the analysis function. May be 
NULL when additional data is not necessary. Caller of the analysis 
function must know and obey the rules for type and layout of the pointed 
data, which are defined on the analysis side. 

Info mode 
All flag pointer 
arguments are 
NULL 

When calcobj, calcconstr, calcgradobj and calcgradconstr are all NULL, the analysis function 
operates in Info  mode. It does not evaluate anything, but checks all storage address arguments 
that are different than NULL and allocates or re-allocates the addressed storage if necessary in 
such a way that all the dimensions of the allocated storage are consistent with the problem defined 
by the analysis function (e.g. addrgradconstr will point to stack with nconstr vector elements of 
dimension numparam, provided that there are also constraints in the response). 

Rerutn value (int)  0 if everything is OK, usually a negative error code of the calculation 
could not be performed correctly. 

 
There are some standard agreements about expected behavior of the standard analysis 

functions: 
The function returns an error code, which is 0 if everything is OK, or a negative error code 

if an error occurs (or at least a non-zero value). Argument param  defines the vector of parameters 
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for which the response should be calculated. It is of type vector , which is described in section 
9.2, together with some basic operations provided for this data type.  

Arguments calcobj , calcconstr , calcgradobj  and calcgradconstr  point to 
flags that define which parts of the response must be calculated and provided via output arguments. 
They stand for the value of objective function, values of constraint functions, gradient of the 
objective function and gradients of constraints, respectively. A non-NULL pointer pointing to a 
non-zero value means that the respective quantity should be calculated while a NULL pointer or a 
non-NULL pointer pointing to an integer whose value is 0 means that the respective quantity does 
not need to be calculated at the particular function call. If evaluation of some quantity is requested 
but it could not be calculated then the function should set the corresponding flag to 0, indicating 
disability to calculate the particular quantity. This is why the request flags are passed as integer 
pointers rather than just integers – in this way return information on whether the requested 
information could actually be provided can be passed back to the caller. The agreement is that if, for 
some problem, a given quantity is not defined (e.g. constraint functions in the case of unconstrained 
minimization problem) but is requested with the respect to the state of the corresponding flag (e.g. 
calcconstraints) then the function should also set that flag to 0. 

Each flag pointer argument is followed by the appropriate address of storage that must be 
provided by the caller to store results of evaluation. The analysis function itself must allocate or 
reallocate space for storing results whenever necessary, but there is an error if something should be 
calculated but the address of the appropriate storage is not provided (i.e. the corresponding 
argument is NULL), and the function should report such errors via the error reporting mechanism 
(section 9.4). 

There is a rule that the analysis function should not allocate or reallocate any storage it 
does not actually need (according to the evaluation requests specified by flag pointers). There are a 
number of reasons for this, one of them is preventing unnecessary consumption of CPU time and 
memory resources. Another reason is provision of firm logical rules of function behavior for its 
callers. For example, when derivative information is not necessary, the caller can call the analysis 
function with storage address for gradients set to NULL without worrying that this will call 
exceptions or breakage of program behavior. The rule is thus logical – why should one bother with 
gradient storage when gradients are not at all requested? 

The argument addrobj  defines the storage address for the objective function value. If the 
evaluation of the objective function is not requested (i.e. the argument calcobj  is NULL or 
*calcobj  is 0) or the objective function is not defined for a given problem then this argument 
may be NULL, and in any case the analysis function should not do anything with the argument or 
the data it points to. When evaluation of the objective function is requested, addrobj  must be a 
valid non-NULL pointer whose value is the address of a pointer to a data unit of type double. The 
pointer pointed to by addrobj  may be NULL, however. In this case it is expected that the analysis 
function will dynamically allocate data storage for data piece of type double and set a pointer 
pointed to by addrobj  to the address of the allocated storage. In principle, addrobj  may also be 
address of a pointer that points to a static variable of type double, because in this case no allocation 
or re-allocation would be made. However, it is preferable that **addrobj  is dynamically 
allocated, in order to prevent troubles with inadvertent implementations of analyses functions that 
do not strictly obey the standards. The C code that will do the job within the analysis function may 
look like this: 

 
if (calcobj!=NULL) if (*calcobj)  /* evaluation req uested */ 
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{ 
  if (addrobj!=NULL) 
  { 
    if (*addrobj==NULL) 
      *addrobj=calloc(1,sizeof(**addrobj)); 
    ... /* 1: perform evaluation */ 
    **addrobj=... /* 2: store calculated objective function */ 
  } else 
  { 
    /* forbidden situation – evaluation requested b ut storage address not 

provided */ 
    *calcobj=0; 
    … /* launch an error report */ 
  } 
} 

 
In practice, most of the described housekeeping operations will be performed by a pre-defined 
utility function (subsection 2.3.2) and the library user who creates the analysis function will only 
take care of evaluation and storage steps, denoted by “1:’ and “2:” in the above code.  

The constraint function values are stored on a stack  (type described in Section 9.3) 
pointed to by addrconstr , as pointers of type double *. Similar rules as for addrobj  apply, 
except that stacks are more complex structured data types for which given rules for data access, 
allocation and re-allocation apply. Gradient of the objective function is stored in a vector  
(Section 9.2) pointed to by addrgradobj , and gradients of the constraint functions are stored as 
pointers of type vector on the stack pointed to by addrgradconstr . 
In accordance with the above described rules, vector *addrgradobj  is allocated or re-allocated 
by the analysis function whenever necessary and only when necessary. This is the case when 
evaluation of the objective function gradient is requested and *gradobj is either NULL or is 
allocated but with wrong dimension. 
Similar rule holds for *addrconstr , except that not only the stack itself is allocated or 
reallocated when necessary, but this is also valid for its elements, which must be pointers to double. 
Therefore, if *addrconstr  points to a stack with more elements than there are constraint 
functions, the stack dimension will be reduced and redundant elements will be de-allocated . If the 
stack is not allocated or has smaller number of elements than there are constraint functions, it will 
be allocated (or re-allocated) together with missing elements. Of course, this will be done only 
when necessary, i.e. when the evaluation of constraint functions is requested (which means when 
calcconstr  points to an non-zero integer and constraint functions are actually defined by a 
given analysis, i.e. the number of constraints is larger than 0). 

Similar rules apply for *addrgradconstr , except that this stack holds vector elements. 
These have themselves a variable number of elements (dimension), therefore elements are not 
simply allocated or de-allocated, but also their dimension must be adjusted. 
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Argument cd  (whose name may be interpreted as “client data” 1) is additional argument that 
does not carry standard input or output analysis data, but is intended to hold additional data that 
precisely defines the analysis. It may be NULL when no extra definition data is required and 
analysis is exactly determined by its implementation in terms of analysis function. This argument is 
a pointer to the data of indefinite type (void *). It is on the analysis function to interpret the data 
(and thus assign an internal type to the pointer) and it is on the caller to pass the pointer that points 
to the data of expected type and structure. 

The cd  argument may be used for more complex data exchange which was not anticipated 
for standard library utilities or optimization algorithms, therefore it may be used also for arbitrarily 
exotic extensions of functionality such as for establishing complex communication protocols 
between optimization algorithms, numerical analyses and end users of the software. Through this 
concept, it is easy to provide very customized functionality that is intended for special situation, and 
this can be done in such a way that implementation can still be used in a standard way, without 
those extra fancy additions. Example of use of the cd  argument to provide numerical differentiation 
of the analysis response is provided in Section 2.5. 

As a simple example, we may define the analysis function that represents unconstrained 
minimization problem with quadratic objective function. In order to exactly define the optimization 
problem, we need additional information, i.e. coefficients of the quadratic function (since the 
analysis function is intended for any quadratic function, not only for some particular function with 
coefficients known in advance). The analysis function may be designed in such a way that 
coefficients must be arranged into a vector in a specific order. Therefore, the parameter cd  may 
simply be a vector of the appropriate dimension. 

 
Info mode: 
When all flag pointer arguments (calcobj, calcconstr, calcgradobj and calcgradconstr) are 

NULL, the analysis functions operates in info mode. This means that nothing is evaluated, but the 
data storage with corresponding address arguments different than NULL is allocated or re-allocated 
(if necessary) with the appropriate dimensions. This can be used to establish the number of 
constraints and whether constraints and/or objective function are defined at all for a given problem. 

Warnings: 
Usage of result storage: When calling the analysis function, the admissible state of the data 

used for storage of results is relatively free. The analysis function will do the necessary allocation or 
re-allocation by itself. However, there are some restrictions. Shortly speaking, automatism can only 
be expected when correct operation is possible. Whenever data pointers addressed by storage 
address arguments are not NULL, they must point to the data of correct type. For example, 
addrgradconstr  (when not NULL) must either point to a NULL pointer or to an allocated 
stack  pointer. In the latter case, the stack may have an incorrect number of elements, but all of 
them must be of type vector . Vector elements of that stack may be of incorrect dimensions. 

                                                 
1 In order to explain the term client data, imagine that we have an stand-alone optimization package and an independent 
software package for direct analyses (which may, for example, include tools for finite element numerical simulation of 
some process). The analysis package may be implemented as a server that serves requests of optimization package. 
Optimization package acts as a client to the analysis package and sends requests by calling functions consistent with the 
standard analysis type. Beside the standard input/output data, the optimization software can pass a pointer cd, which is 
set by the client data in order to pass to the server additional information about what the client wants, i.e. what type of 
analysis should be performed. Of course, the type and structure of the data passed must be agreed in advance by both 
software packages. 
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However, either when the number of stack elements is incorrect (i.e. not equal to the number of 
constraint functions) or the dimensions of some of its elements are inconsistent (i.e. not equal to the 
number of optimization parameters), the stack and its elements must be dynamically allocated and 
their pointers must be the actual access handles. Only in this way eventual re-allocation may be 
done harmlessly. Once again, storage allocation will usually not done explicitly by the designers of 
analysis functions, but functions provided by the library will be used instead (subsection 2.3.2). 

 

2.3.2 Tools and templates for implementing analysis functions 

For many users it may be a true nuisance to implement analyses functions according to the 
library standards, while adhering to the above mentioned rules enables a high level of flexibility 
when using the library or implementing new tools. Therefore, the user can use the provided pre-
defined tools that do a large part of the job, and thus concentrate only on implementing the 
procedures for calculation of the analysis response. 

When implementing an analysis function for a given class of optimization problems, it is 
recommendable to start form simple examples provided in the library source code. The function 
testanfunc  that is found in optbas.c  is provided especially for this purpose. The function 
defines a simple optimization problem with two design parameters and two constraints, and 
therefore it features most of what average users will ever need to take care of when implementing 
such functions. In order to implement a new analysis function, one can copy this template and just 
replace those parts of code where response is evaluated and stored. For storage of the response, one 
needs to know some basic things about the vector and stack types, which are outlined in Section 9 
(Subsections 9.2 and 9.3).  

 
In order to allocate the space for storage of results, check and report inconsistency in 

arguments and ensure proper operation of the analysis function in info mode (this is the case when 
the analysis function is called with all flag pointers NULL, see Sub-section 2.3.1), we should use 
the function prepanfuncbas, which is declared as follows: 

 
 

int prepanfuncbas(vector param, int *calcobj, double **addrobj, int 
*calcconstr, stack *addrconstr, int *calcgradobj, v ector 
*addrgradobj, int *calcgradconstr,stack *addrgradco nstr,void 
*clientdata, int nparam,int nobj,int nconstr,int de robj,int char 
*funcname,char *filename,int fileline); 

 
This function is called within of a standard analysis function (of type analysis_bas_f , 

see Sub-section 2.3.1). First group of arguments are the same as for the analysis function (names of 
these arguments are listed in the above declaration with the same names as in the description of the 
standard analysis function) and arguments of the analysis function must be passed literally in their 
place. The next set of arguments define information that is specific for the problem implemented by 
the analysis function, and these information must be provided and passed within the analysis 
function: 
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nparam  is the number of parameters of the problem. If the problem is defined for a fixed 
number of parameters, this number must be passed, otherwise the actual number of parameters 
(defined as dimension of param ) or 0 may be passed.  

nobj  must be 1 if the objective function is defined for the problem, or 0 if it is not. 
nconstr  must be the number of constraint functions. 
Arguments derobj  and derconstr  specify whether derivatives (gradients) of the 

objective functions and constraint functions, respectively, can be calculated by the analysis 
function. 0 must be passed if the corresponding derivatives can not be calculated, or 1 if they can. 

Other arguments provide the necessary information for reporting errors: funcname  should 
be the name of the analysis function in which prepanfuncbas  is called, and filename  and 
fileline  should be the name of the source file and line number where the function is called (this 
information is not vital for function operation, but is necessary for correctness of information 
provided in eventual error reports). The last two arguments are usually provided through pre-
defined compiler macros __FILE__ and __LINE__ (note double underscores in macro names). 

The function returns 0 if the analysis should proceed with evaluation of the requested 
results, a negative error code if an error occurred (mainly this would mean inconsistency of input 
arguments) or 1 if the analysis function was called in info mode. 

 
Schematically , the function is called within the analysis function in the following way: 
 

int ret =0;  /* return value of analysis function * / 
...   /* other declarations */ 
...   /* eventual auxiliary code to determine param eters of operation, e.g. 

on basis of the client data and/or other arguments – specific for 
the analysis function */ 

if ( ! ( ret=prepanfuncbas ( ... , /* arguments of the analysis function */ 
         <nparam>, <nobj>, <nconstr>, <derobj>, <de rconstr>, <funcname>, 

__FILE__, __LINE__) )  ) 
{ 
  ...  /* Evaluation and storage of results; storag e space has already been 

allocated by prepanfuncbas */ 
} 
return ret;  

 
 
Arguments that are replaced by “…” are the arguments of the analysis function in which 

prepanfuncbas  is called and are literally copied from the argument block of that analysis 
function. Arguments in angle brackets (< >) are prepared within the analysis function before the 
call, and the last arguments are pre-defined compiler macros that are stated literally (during compile 
time these macros are replaced by constant values that define the name of the source file and the 
line number where the macro is called). An example of use can be found in the previously 
mentioned function testanfunc  in optbas.c .  

 



 
 

2. Basics   IOptLib User’s Manual 
 

 

 

 

12 
 
 

2.3.3 Standard vector function 

 
As equivalent to standard analysis functions, there is a type vec_bas_f for calculating vector 

response in which all parameter dependent functions are equally treated as components of a vector 
function. Definition is  

 
typedef int (*vec_bas_f) (vector param, int *calcva l, vector *valaddr, int 

*calcgrad, matrix *gradaddr, void *clientdata); 

 
Similar to standard analysis function, this function takes vector of parameters as first 

arguments, and then pointers to calculation flags followed by corresponding storage addresses. 
There is no distinction between different individual function, so values of all of them are stored to a 
vector addressed by valaddr . Gradients of components are stored (if requested and if they can be 
calculated) by rows1 in the Jacobian matrix pointed to by gradaddr . The argument clientdata  
is reserved for additional definition data that specifies how the function is calculated (it can contain 
coefficients etc.). 

 

2.4 Conversion between standard analysis and standard vector 
function 

 
The standard analysis function (type analysis_bas_f , Section 2.3.1) has been designed 

to fit well the needs of calculating the response defining optimization problems. One of the design 
features is that the objective function is distinguished (at least in the level of code design) from 
constraint functions. This suits well the role in the optimization problems of class (1), but for 
various analysis tasks objective and constraint functions may be treated equally, since from analysis 
perspective both objective and constraint functions are just functions defined on the same parameter 
space. Therefore, for some tasks representation of response by the standard vector function (type 
vec_bas_f , Section 2.3.3) where all response functions are treated equally as components of a 
single vector function, may be more suitable. For these tasks (numerical differentiation described in 
Section 2.5.1.22.5 is an example) a seamless conversion between both type of functions is provided. 

 
The basis of conversion is the conversion type analysis_to_vecfunc_cd  (defined in 

optbas.h ), which is a pointer to the structure that contains all the data necessary for conversion 
and also the auxiliary data for storage of intermediate results. This type is intended for conversion 
in both directions. Basic data it contains are the function pointer (address of the function to be 
converted), definition data for that function and eventually the function for de-allocation of the 
definition data, for either type of function that needs to be converted. Conversion is performed 

                                                 
1 Sometimes it is beneficial to have the matrix of gradients such that gradients are stored by rows rather than by 
columns. Conversion between the two forms is done simply by transposition, using e.g. function mattransp0  from 
matrixop.c . 
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simply by preparing the conversion data object and calling the appropriate conversion function 
(with the prepared conversion data as its definition data) instead of the original one. 

 
Declaration of the function that converts from the standard analysis (analysis_bas_f) to 

standard vector (vec_bas_f) form is 
 

int vecfunc_froman(vector param, int *calcval, vect or *addrval, int 
*calcgrad, matrix *addrgrad, analysis_to_vecfunc_cd  cd); 

 
The opposite conversion is performed by the function 
 

int anfunc_fromvec(vector param, int *calcobj, doub le **addrobj, int 
*calcconstr, stack *addrconstr, int *calcgradobj, v ector 
*addrgradobj, int *calcgradconstr, stack *addrgradc onstr, 
analysis_to_vecfunc_cd cd); 

 
Example 1 below shows how conversion can be applied in order to use a fictitious vector 

function my_vecfunc  for the definition of the objective function and constraints of the 
optimization problem, and performing optimization on the problem defined in this way. It is 
assumed that the vector functions takes a matrix of coefficients as its definition data. In order to use 
this function as definition of the optimization problem and perform optimization, we need to 
perform conversion to the standard analysis form. All we need to do is to create the conversion 
object of the type analysis_to_vecfunc_cd  and set the address of the vector function 
(my_vecfunc  in this case) and pointer to the definition data (matrix coef) on the conversion 
object (function for de-allocation of vector function definition data is set to NULL because the data 
will be de-allocated independently of the conversion data). After that, we can use the analysis 
function anfunc_fromvec  with conversion data as definition data. This function calls the 
appropriate vector function with its definition data (found on the conversion object) and re-arranges 
the results of the vector function in the returned data of the (converted) analysis function. 

 

Example 1: Conversion of standard analysis to standard vector function. 

 
... 
matrix coef=NULL; 
analysis_to_vecfunc_cd convertcd=NULL; 
...  /* Definition of coefficients for the vector f unction, etc. */ 
/* Preparation of conversion data: */ 
convertcd=new analysis_to_vecfunc_cd(); 
convertcd->vecfunc=my_vecfunc;    /* original vecto r function */ 
convertcd->veccd=coef;    /* vector function defini tion data */ 
convertcd->dispveccd=NULL;  /* de-allocate definiti on data elsewhere */ 
convertcd->numobj=1;  /* The first component of the  original vector function 

is treated as the objective function (and the rest as constraint 
functions) */ 

... 
/* Use of the analysis functioin that has been conv erted from vector 

function, in optimization: */ 
optimizebas(..., anfunc_fromvec , convertcd); 
...  /* Do something with results */ 
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/* Clean-up: */ 
dispmatrix(&coef); 
disp analysis_to_vecfunc_cd(&convertcd) 
 

 

2.4.1.1 Preparation of conversion data 

Currently there are no special functions for preparation of conversion data. However, 
preparation is simple enough to be done manually. We just need to create the conversion data object 
of type analysis_to_vecfunc_cd  and set the fields that define the function that would be 
converted to another form (either the standard analysis or vector function). See Example 1 for 
conversion of vector form to analysis form. The opposite conversion is done similarly, except that 
we need to set fields anfunc , ancd  and dispancd  instead of vecfunc , veccd  and 
dispveccd , respectively. 

 

2.4.1.2 Definition of conversion type   

Definition of the conversion data type (in optbas.h ) is as follows: 
 

typedef struct _analysis_to_vecfunc_cd { 
  int type,id;    /* Type and unique ID */ 
  int numparam,numobj,numconstr,numval; 
  vector param;   /* Vector of parameters */ 
  int calcobj;    /* beginning of data for analysis  function: */ 
  double *obj; 
  int calcconstr; 
  stack constr; 
  int calcgradobj; 
  vector gradobj; 
  int calcgradconstr; 
  stack gradconstr; 
  int anret;    /* end of data for analysis functio n */ 
  int calcval; 
  vector vecval;  /* beginning of data for vector f unction */ 
  int calcgrad; 
  matrix vecgrad; 
  int vecret;     /* end of data for vector functio n */ 
  /* Data for performing analyses: */ 
  analysis_bas_f anfunc; 
  void *ancd; 
  void (*dispancd)(void **); 
  int anblockgrad;  /* inhibit gradient calculation  by anfunc */ 
  /* Data for evaluating vector function: */ 
  vec_bas_f vecfunc; 
  void *veccd; 
  void (*dispveccd)(void **); 
  int vecblockgrad;    /* inhibit gradient calculat ion by vecfunc */ 
  /* Auxiliary data for additional operations such as line search or 
  numerical differentiation: */ 
  int recordan; 
  int recordvec; 
  stack anpoints; 
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  stack anstore;  /* storage for unused analysis po ints */ 
  /* void (*dispanpoint) (void **); */ 
  stack vecpoints; 
  stack vecstore;  /* storage for unused vec. func.  points */ 
  /* Auxiliary points for intermediate results: */ 
  analysispoint auxanpt; 
  vecfuncpoint  auxvecpt; 
} *analysis_to_vecfunc_cd; 

 

2.4.2 Remarks on double conversion (forth & back)  

The same conversion object of type analysis_to_vecfunc_cd  can be used for two 
opposite conversions at the same time (i.e. from the standard vector function to standard analysis 
function and vice-versa). Undesirable interferences in such scenarios are prevented by using distinct 
auxiliary data for the two opposite types of conversion.  

 
For example, conversion from standard vector to standard analysis form uses auxiliary data 

fields vecret , calcval , calcgrad , vecval  and vecgrad  for intermediate storage of results 
of the vector function (field (…)->vecfunc). These results are converted to the form convenient for 
the standard analysis function before copying them to the output arguments of the conversion 
function (usually anfunc_fromvec ). For the intermediate storage, the field (…)->auxanpt  of 
type vecfuncpoint  (designed specially for storing results of vector functions) is used. We could 
have used the fields anret, calcobj, calcconstr, calcgradobj, calcgradconstr, obj, constr, gradobj and 
gradconstr as well. However, these fields are also used by functions for the opposite conversion (i.e. 
from analysis to vector form) for storing results of the converted analysis function, therefore such 
use could cause undesirable interference. We therefore use different storage on the conversion 
objects for storage of function results (either of standard analysis or vector function) and for 
intermediate storage of converted data1. 

 
This is especially useful when only a temporary conversion to a specific form is necessary in 

order to perform some operation that is implemented for one form of response functions but not for 
another. A typical example is numerical differentiation (see Section 2.5). This operation is 
implemented for standard vector functions (type vec_bas_f ) while we would sometimes like to 
use it for numerical differentiation of analysis response calculated by a standard analysis function 
(type analysis_bas_f ). Rather than implementing the same operation twice, we can use 
conversion from analysis to vector function, differentiate the results of the vector function, and 
convert the function that calculates the numerical gradients of the vector function back to analysis 
function. In this case, we need the (converted) vector function just for performance of numerical 
differentiation (in order to calculate gradients that are not provided analytically), while in the final 

                                                 
1 Actually, intermediate storage for converted data is introduced just for convenience. Alternatively, results of the 
converted function could be directly copied to the output arguments of the conversion function. With intermediate 
storage, we can simplify things by treating all special cases (i.e. storage addresses defined or not, calculation of specific 
response requested or not, etc) separately from conversion between two different forms of data arrangement (i.e. 
analysis versus vector form). 
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stage we would like to operate on the analysis function. The above described system enables use of 
the single conversion data pointer for both ways of conversion (with other words, 
anfunc_fromvec  and vecfunc_froman  will use the same definition data). See Sub-section 
2.5.2 on more details how this is implemented. 

 

2.5 Numerical differentiation of analysis results 

 
The role of this chapter is twofold. The first part describes how to use numerical 

differentiation of a given analysis function, which is implemented in the library. This part is of the 
sole interest for users of the library. 

 
On the other hand, the second part of the chapter gives a more detailed specification of 

implementation concepts and is meant as an instructive example of how a given task is 
implemented in the library. While the first part will be interesting for users of the library, the second 
part is mainly intended for people who intend to contribute development work to the library or to 
extend the library for their own needs. These readers can read only the introduction of the first part 
of the chapter and skip to the second part, unless they will use the numerical differentiation 
functionality.  

 
 
 

2.5.1 User instructions 

 

2.5.1.1 Numerical differentiation: background 

Differentiation of the numerical analysis refers to calculation of gradients of all functions 
that define the analysis, i.e. the objective and constraint functions. In some cases, analysis functions 
may be able to provide analytical derivatives. Otherwise, we can perform numerical differentiation 
if we need the derivatives. The simplest approach is to use a finite difference method with the same 
parameters for each function: 

 

 
( ) ( ) ( )
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Instead of the forward difference formula (2) the backward or central difference formulas 

can also be used, which are also simple and direct formulas, except that the central difference 
requires two additional function evaluations for each derivative instead of one (and is therefore 
more precise, exact for quadratic functions).  
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There are also more complex formulas where the number of additional function evaluations 
is not even known in advance. For example, we can sample function f in a number of points x1, x2, 

…, xm, calculate some kind of interpolation or approximation f
~

 of f on basis of the sampled data 
f(x1), f(x2), …, f(xm), and calculate the approximate derivatives as derivatives of the approximation  

f
~

. Adaptive schemes can be used, which estimate accuracy of the approximation and sample in 
additional points with automatic adaptation of sampling domain until accuracy is optimal or 
satisfactory. 

 
In optimization, the response consists of more functions, usually one objective function f 

and several constraint functions ci. We can consider the overall response as a vector function g, 
 
 ( ) ( ) ( ) ( )[ ]xxxxg mccf ...,,, 1= . (3) 
 

2.5.1.2 Use of numerical differentiation 

 
Let us say we have an analysis function called my_analysis , which calculates the 

objective and eventually the constraint functions but can not calculate their derivatives with respect 
to parameters. The analysis function must be of the standard form, i.e. of type analysis_bas_f  
(section 2.3.1). We would like to solve the optimization problem defined by this analysis function 
by using a gradient-based algorithm implemented by the function grad_optimize  (the name is 
fictitious and can refer to any gradient based algorithm that is actually implemented).  

For generality, we will assume that the analysis function requires additional definition data 
of type my_an_def  and that the function prepare_an_def  is used to prepare this definition 
data and the data can be de-allocated by the function declared as  

 
void disp_an_def (my_an_def *addrdef); 

 
In order to perform the optimization, we will define a new analysis function, which takes the 

function my_analysis  (together with its definition data) for calculating the response and 
numerically differentiates the response whenever required, returning the response and its 
numerically calculated derivatives (if requested). This is done in the following way: 

 

Example 2: Setting up an analysis that numerically differentiates the originally provided 
analysis function (and data) and using it for gradient based optimization. 

my_an_def andeforig=NULL;  /* definition data for original analysis */  
analysis_bas_f gradfunc=NULL;  /* new analysis function with original definition o f 

response and numerical derivatives */  
analysis_to_vecfunc_cd gradcd=NULL;  /* definition data for new analysis */  
void (*dispgradcd) (void **)=NULL;  /* function for de-allocation of definition data */  
double numderstep; 
... 
numderstep=1.0e-6;  /* finite difference step used for numerical differ entiation */  
prepare_an_def(..., &andeforig);  /* set up definition data for the original analysis  

(dynamically allocated) */  
/* Prepare the analysis that will add derivative in formation by numerical differentiation of the 

original analysis: */ 
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prepanfuncnumgrad( my_analysis, (void *) andeforig, (void (*)(void **)) 
disp_an_def, 

        numderstep, NULL,   0, 0, 0, 
        &gradfunc, &gradcd, &dispgradcd ); 
/* Perform gradient-based optimization: */ 

grad_optimize(..., gradfunc, gradcd, ...); 
... /* Tread optimization results, etc. */  
/* De-allocate auxiliary structures: */ 
if (dispgradcd!=NULL && gradcd!=NULL) 
  dispgradcd((void **) &gradcd); 

 
The function prepanfuncnumgrad has has been used for preparation of the analysis 

function for numerical derivation of the originally provided response and its definition data. The 
first two arguments of this function are the original analysis function and its definition data. 

The function chooses the pre-defined analysis function that will perform the analysis with 
numerically calculated gradients (its address is written to gradfunc  in the above example) and 
prepares dynamically allocated definition data for this analysis (its pointer is stored to gradcd  in 
the above example). The function also sets the address of the function for de-allocation of the 
definition data for analysis with numerical gradients, which is used at the end to de-allocate the 
created definition data. 

If the function for de-allocation of the original definition data (in this case ) was not 
specified (i.e. NULL was passed as the corresponding argument to prepanfuncnumgrad ), then 
de-allocation of gradcd  would not de-allocate the definition data. This is useful when we want to 
further use the original definition data1. 

According to the current implementation, we don’t need the prepanfuncnumgrad  to 
store the analysis function for numerical differentiation and the function for de-allocation of its 
definition data, since these are known in advance. The analysis function (its address is stored to 
gradfunc ) is anfunc_fromvec while the function for de-allocation of the definition data (its 
address is stored to dispgradcd ) is dispanalysis_to_vecfunc_cd. We could have used 
these functions directly instead of gradfunc  and dispgradcd , however, provision of function 
addresses by prepanfuncnumgrad  enables extensions of the system for numerical 
differentiation of the analysis response and is therefore safer to use.  

The parameter numderstep  defines the scalar step used for numerical differentiation. The 
step can be separately provided for each design parameter, which is done by a vector argument 
following the scalar step (if this argument is NULL then a scalar step is taken). 

 
Declaration of the function that prepares data for numerical differentiation and the meaning 

of its argument is as follows: 
 

analysis_to_vecfunc_cd prepanfuncnumgrad(analysis_bas_f anfunc, void *ancd, 
void (*dispancd) (void**), double step, vector vste p, int backdif, 
int quadratic, int noforcenum, analysis_bas_f *addr func, 
analysis_to_vecfunc_cd *addrcd, void (**addrdispcd) (void **) ) 

 
                                                 
1 This may be the case, for example, when the complete job from Example 2 is done within a function and the original 
analysis function and its definition data are passed from the calling code as arguments of this function. In this case, the 
caller would create the original definition data and would also have the responsibility to destroy (de-allocate) it when 
not needed any more. 
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Function prepanfuncnumgrad  creates (allocates) and prepares the definition data that 
will be used for the analysis that undertakes the numerical differentiation of the original response. 
Pointer to this data is returned by the function and stored to *addrcd  if this argument is not NULL 
(either the address of already allocated data or of a NULL pointer can be passed). After preparation, 
the definition data contains the address of the original analysis function (provided through argument 
anfunc ) and its definition data (provided through andata, which may be NULL if a definition data 
is not necessary for the original analysis). 

The analysis function that eventually performs numerical differentiation of the original 
analysis is provided through the output argument addrfunc . The address of the function is stored 
in the pointer pointed to by this argument, which should be of type analysis_bas_f . The 
provided function can be used as the original analysis function, except that the provided definition 
data (the returned pointer) is used and that the function is able to provide gradients of the response 
by automatic numerical differentiation of the original response whenever necessary. 

Since the definition data is dynamically created, it should be de-allocated after use. This 
should be done by the function whose address is provided through the output argument 
addrdispcd . De-allocation by using this function also de-allocates the definition data for the 
original analysis provided that it had been provided by the argument ancd  (i.e. if this argument 
was not NULL when prepanfuncnumgrad  was called) and also the appropriate de-allocation 
function had been provided by the argument dispancd . If that argument is NULL then de-
allocation of the created definition data will not affect the definition data for the original function 
(its de-allocation can be performed elsewhere). 

Arguments of the function are described in more detail below. 
 
anfunc  is the original analysis function whose response will be numerically differentiated 

by the provided function. 
ancd  is the definition data for the original analysis function (may be NULL if the analysis 

function does not require any particular definition data). 
dispancd  is an optional argument (it may be NULL) that specifies the function for de-

allocation (destruction) of the definition data for original function (defined by the argument ancd ). 
If it is non-NULL then de-allocation of the created definition data (provided through addrcd ) will 
also de-allocate ancd  by using this function. If it is NULL, de-allocation of the created definition 
data will not attempt to de-allocate the original definition data ancd . 

step  specifies the step length for numerical differentiation (i.e. the amount for which 
optimization parameters are perturbed when performing numerical differentiation). It should be a 
positive integer. 

Vector of steps vecstep  may be specified to define the step length for each parameter 
separately. If specified then it must have the same dimension as the design space (equivalently, the 
vector of parameters). Its components have the same meaning as ih  in equation (2). If it is NULL 

then the scalar step  is taken for perturbation in all co-ordinate directions. 
The arguments backdif , quadratic , and noforcenum  define flags, which define how 

numerical differentiation is performed. The value 0 can be used for all of these arguments. Their 
meaning is the following: 

backdif : if non-zero then backward difference scheme is performed instead of forward 
difference. 
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quadratic : if non-zero then a central difference scheme is applied where each derivative 
is calculated by performing two additional analyses at perturbed parameters. 

noforcenum : if non-zero then original (analytical) derivatives are used if they can be 
provided by the original analysis function. This can be used to set up the analysis function which 
automatically performs numerical differentiation if it is necessary, but uses the originally provided 
derivatives if their calculation can be performed by the original analysis function. 

addrfunc  (output argument) is the address of the variable (it should be of function type 
analysis_bas_f) into which the address of the new analysis function (that will provide gradients by 
numerical differentiation) is stored. We can pass NULL for this argument, in this way it is assumed 
that we know which analysis function is used for numerical differentiation. Currently, this particular 
function is always anfunc_fromvec. However it is safer to obtain the function address through 
output argument addrfunc  because the system may be extended in the future in such a way that 
different functions will be used. 

addrcd  (output argument) is the address of a pointer to which the (address of) newly 
created definition data for the analysis undertaking numerical differentiation is assigned. The 
analysis is performed by the function whose address is stored to *addrfunc , therefore *addrcd  
will point to the definition data that must be used with that function. The data is dynamically 
allocated, therefore it must be de-allocated when not needed anymore. De-allocation is done by the 
function whose address is stored in the next argument. The argument addrcd  may be NULL 
because the created definition data is also returned by the function. 

addrdispcd  (output argument) is the address of the function pointer to which the (address 
of) function for de-allocation of the definition data is stored. This function must be called to de-
allocate the definition data pointer that is stored to *addrcd  or returned by 
prepanfuncnumgrad . This argument may be NULL, in which case it is assumed that the caller 
knows how to de-allocate the created definition data. Currently only one type of the definition data 
is used and can be de-allocated by the function dispanalysis_to_vecfunc_cd , however the 
system may be extended in the future and it is therefore safer to perform de-allocation by the 
function provided through the argument addrdispcd . 

Function returns the created definition data for the analysis that performs numerical 
differentiation of the original analysis. 

 

2.5.2 Example for developers: implementation of numerical differentiation 
  

Form (3) where objective and constraint functions are treated on equal terms is somehow 
more convenient for implementation of numerical differentiation. Basic variants of functions for 
numerical differentiation of the analysis response are therefore not implemented for functions of 
type analysis_bas_f  (section 2.3.1), but for functions of type vec_bas_f  (Section 2.3.3) 
representing vector functions. |Numerical differentiation of analysis response is therefore performed 
in such a way that response is converted to a vector function, which is differentiated numerically, 
and vector response with its numerical derivatives is converted back to analysis response with 
numerical derivatives. Conversion between different response is just re-arrangement of data. 
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Calling scheme is shown in Figure 1. Numerical differentiation is actually performed by the 
function vecfuncnumgrad , which differentiates the response obtained by vecfunc_froman . 
This function just calls the original analysis function and converts its response to vector form before 
returning it. The function anfunc_fromvec  re-arranges the numerically differentiated response 
returned by vecfuncnumgrad  and returns it. This function can therefore be seamlessly called 
instead of the original (possibly non-derivative) analysis function to provide response gradients in 
additional to the response itself. In order to calculate the gradients, the original analysis is 
calculated several times at perturbed parameters, which is done by vecfuncnumgrad  that calls 
the original analysis indirectly through vecfunc_froman . This is however not seen by the caller 
who calls the anfunc_fromvec  just like any other standard analysis function. 

Crucial for the system to work correctly is the analysis definition data for the outer-most 
level anfunc_fromvec , which contains the definition data for all inner levels and also some 
auxiliary storage which abolishes the need for allocation and de-allocation in subsequent calls1. 
Processing overhead is therefore limited to transcription of data from one form to another (i.e. from 
analysis to vector and then back to analysis form) and to two additional function calls (for 
conversions from analysis to vector form and back), which could be avoided if differentiation was 
performed directly on the analysis response. This is usually negligible as compared to unavoidable 
additional calls off the original analysis at the perturbed parameters. 

It is indicated in Figure 1 which definition data is used in outer and inner level calls. 
Definition data of type analysis_to_vecfunc_cd , which is created and returned by 
prepanfuncnumgrad  through the argument addrcd 2 (and is denoted CD in Figure 1), is used 
by the outer-most function anfunc_fromvec 3. The same definition data is used by 
vecfunc_froman , which converts analysis response to vector response. The outer-most 
anfunc_fromvec  calls the vector function CD->vecfunc (which is set to vecfuncnumgrad ) 
with definition data CD->veccd. On the other hand, vecfunc_froman  calls the analysis function 
CD->anfunc (which is set to original analysis function whise response should be differentiated) 
with definition data CD->ancd (which is the original definition data). 

CD->veccd is dynamically allocated definition data of type vecfuncnumgradcd, designed in 
particular for numerical differentiation of vector functions (type vec_bas_f) and used by 
vecfuncnumgrad . This function calls (for evaluation of non-derivative vector response) CD-
>veccd->vecfunc, which is set to vecfunc_froman , with definition data CD->veccd->veccd, 
which is set back to CD. 

 

                                                 
1 Allocation of intermediate result storage is done only in the first call. In subsequent calls, already allocated space is 
used. This auxiliary space is de-allocated when the definition data for analysis with numerical differentiation is de-
allocated. 
2 Function for de-allocation of the created definition data is returned through the argument addrdispcd .  
3 Address of this function itself is also provided by prepanfuncnumgrad  (through the argument addrfunc ), 
which makes the system extensible. This function converts vector response (on which numerical differentiation is 
actually performed) back to analysis response. The caller can just use dispanalysis_to_vecfunc_cd  for de-
allocation (normally, this function will be provided by prepanfuncnumgrad ). Using the provided function enables 
extension of the mechanism without affecting the code that makes its use, however it is not foreseen that the type of the 
definition data could change. 
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anfunc_fromvec (par., …, CD) 

type: analysis_to_vecfunc_cd  
created by prepanfuncnumgrad and returned through addrcd 

vecfuncnumgrad (par., …, CD->veccd ) 

type: analysi_bas_f  
set by prepanfuncnumgrad through argument addrfunc  
Returns numerically differentiated response of the original analysis, converted from 
(numerically differentiated) vector response. 

vecfunc_froman (par., …, CD) 

CD->anfunc (par., …, CD->ancd)     - original analysis function (of type analysis_bas_f) 

=CD->vecfunc, type: vec_bas_f  
Returns numerically differentiated vector response converted from original analysis 
response. 

type: vecfuncnumgradcd , dynamically 
allocated by prepanfuncnumgrad 

=CD->veccd->vecfunc , type: vec_bas_f  
Returns vector response converted from response of original analysis function.  

=CD->veccd->veccd  

Original analysis function to be differentiated , type: analysi_bas_f  

Original analysis data, type: void *  

 
 

Figure 1: Calling scheme for numerical differentiation of response function calculated by 
the analysis function. 

 
Below the calling scheme form Figure 1 is depicted in a simpler form: 
Calling scheme presented in short: 

• anfunc_fromvec(…, analysis_to_vecfunc_cd CD) 
o vecfuncnumgrad(=CD->vecfunc)(…, vecfuncnumgradcd cdvec(=CD->veccd)) 

� vecfunc_froman (=cdvec->vecfunc)(…, analysis_to_vecfunc_cd CD (=cdvec-

>veccd)) 
• anfuncorig (=CD->anfunc)(…, void * cdorig (=CD->ancd)) 

 

2.5.2.1 Additional functionality 

The mechanism for numerical differentiation enables some additional functionality. Most of 
this is enabled by the structure of the type analysis_to_vecfunc_cd , which is intended for 
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conversion between analysis response and vector function response. In order to use this 
functionality, one must directly access the definition data structure (call it CD, fsay). 

 For example, setting the flag CD->recordan will cause that results of individual analyses 
will be recorded and pushed on the stack CD->anpoints as pointers of type analysispoint . 
These pointers are dynamically allocated and can be popped from the stack for further use (e.g., 
analysis results at perturbed parameters, which are calculated implicitly at numerical differentiation, 
can be further used for forming approximated response). Recording (i.e. transcription of analysis 
response to analysis points on CD->anpoints) is performed by vecfunc_froman  when CD-
>recordan is non-zero. 

If the caller will only need the recorded analyses temporarily to do some checks something 
after calling the function, he can move them from CD->anpoints to CD->anstore. In this way, the 
analysis points will be recycled (used at next analysis recording), which will reduce the need for 
dynamic allocation (since already allocated analysis points will be used to record results). 

 

2.5.3 Extension of the numerical differentiation system   

Most likely, intended extension of the system will include addition of new methods for 
numerical differentiation. For this, one will need to extend the vecfuncnumgrad  function, which 
actually does the job. When extending this function directly, it would probably need new flags on 
its definition data of the type vecfuncnumgradcd , which would tell the function to perform 
differentiation according to the newly added method. One should therefore extend the body of the 
function and the definition of the type of its definition data. This is possible if one has the source 
code of the appropriate modules (in this case optbas.c ). However, in order to make extension 
accessible to other users of the library, it should be built into the distribution that is used by these 
users. 

 
More elegant way is to add a completely new function that would replace 

vecfuncnumgradcd  when a new differentiation method would be used, and a new function for 
preparation of the definition data for the outer-most level analysis function. This function can be 
based on prepanfuncnumgrad  and can be its simple extension (e.g. it can simply call 
prepanfuncnumgrad  when previously implemented method is requested, or do preparation of 
definition data itself when the new method is requested). In the case when the newly implemented 
algorithm is requested, the data preparation function should store address of the new function for 
numerical differentiation in CD->vecfunc, its definition data in CD->veccd, and address of the 
function for de-allocation of CD->veccd in CD->dispveccd.  

The type of CD->veccd would not necessarily be vecfuncnumgradcd , by which we 
would avoid the necessity to extend this type. If the type would turn sufficient to carry all the data 
needed for the new algorithm, we can of course keep the old type. In this case we can use other 
functionality supported by this type, e.g. storing of vector points. If we only need some minor 
extension of the type (e.g. some additional flags or coefficients), we can use an array of pointers of 
standardized length where the first pointer points to data of type vecfuncnumgradcd  and the 
rest point to additional data. Then we can still use whatever is provided by the original type. Of 
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course, we must correspondingly implement the de-allocation function, which is stored in CD-
>dispveccd.  

When deriving a new definition data preparation function from the original 
prepanfuncnumgrad , we must take care of what to do when the definition data for vector 
function with numerical differentiation CD->veccd is already allocated. If the type is appropriate 
(i.e. the same as will be used for our definition data) then we can use it and only change the 
contained data as necessary (e.g. the flags that precisely specify which numerical differentiation 
algorithm is used). If the type of already allocated CD->veccd is not the same as the one we will 
use, we must first de-allocate the old data (by using CD->dispveccd) and then create CD->veccd 
anew. If CD->dispcd is NULL then we don’t de-allocate CD->veccd because it will be de-allocated 
somewhere else1, otherwise we use this function for de-allocation. Normally, we check equivalence 
of types by comparing the de-allocation function CD->dispveccd to the one used for de-allocation 
of our data - if they are the same then we can conclude that the types are the same, too. In this 
specific case, de-allocation of eventually allocated CD->veccd can be made in any case because de-
allocation at this point does not significantly affect the processing time and thus computational 
efficiency. 

2.5.3.1 Additional implementation remarks 

Numerical differentiation of analysis results requires double conversion from standard 
analysis to standard vector function and back to standard analysis function. For both conversions, 
the same data structure (called CD in the above discussion) of the type 
analysis_to_vecfunc_cd  is used as definition data. These conversions are performed by 
vecfunc_froman  and anfunc_fromvec , respectively (Figure 1). The implementation 
remarks explaining how both conversions can use the same structure are given in Sub-section 2.4.2. 

 
 

2.6 Prevention of repeated analysis at the same parameters and 
analysis counts 

Some of the provided automatisms may cause the same numerical analysis to be 
successively performed several times with the same optimization parameters. This is the case fe.g. 
when the implementation of optimization algorithm requires separate functions for evaluation of 
each type of response, but the analysis is structured in such a way that the most time consuming part 
of calculation is the same for all types of response upon which calculation of individual parts of 

                                                 
1 Such is the agreement for many structures that contain pointers to another possibly dynamically allocated structures. 
Such a structure contains address of a function for de-allocation of the dynamically allocated structure, and if this 
address is NULL then this means that the pointer is managed somewhere else (i.e. pointer on the structure is not the 
main handle of the data), therefore de-allocation should not be made. Such agreement is typical for structures that may 
contain some additional data of types which are not known in advance. In contrary, for container types that are 
primarily intended for carrying large amount of data (such as the stack  type), different agreement may be used, and 
some function for de-allocation of container types may consider non-specification of function for de-allocation of 
individual elements just as indication that elements are simple pointers, which can be de-allocated by the standard 
function free . 
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response only requires a negligible amount extra time1. Such redundant repetitions are undesirable 
especially when the analysis is time consuming. 

 
Such situations can be avoided by replacing the original analysis function by the 

appropriate wrapping function that records the last results and prevents repetitive performance of 
the analysis at the same optimization parameters by simply returning the already calculated 
response2. The function calls the original function when the evaluation of response is actually 
needed. Let us mention that this mechanism can also be used for defining the analysis function that 
returns a previously stored response, which may be useful in some cases. 

 
The basic analysis function that prevents redundant calculation is defined in optbas.c  and 

is declared as  
 

int anfunccountnorepeat(vector param, int *calcobj,  double **addrobj, int 
*calcconstr, stack *addrconstr, int *calcgradobj,ve ctor 
*addrgradobj, int *calcgradconstr, stack *addrgradc onstr, void 
*cd[4]); 

 
The function is of the standard analysis function type analysis_bas_f , except that the 

type of the definition data (the last argument cd ) is prescribed and must be an array of four 
pointers. Other arguments must be the same as would be passed to the original function. 

cd[0]  must be the address of the original analysis function, which will be called by 
anfunccountnorepeat  whenever necessary (i.e. when the requested response is not known 
from one of the previous calls). 

cd[1]  must be the definition data for the original analysis. 
cd[2]  must be a pointer to storage of type int. If it is not NULL then the number pointed to 

by cd[2]  is used as analysis counter and is incremented each time the original analysis is called 
within the function. 

cd[3]  must be an address of a variable of type analysispoint , and is used to store 
analysis results. The pointer pointed to by cd[3] may either be NULL or a valid dynamically 
allocated pointer of type analysispoint . If it is NULL then it will be allocated internally within 
the function. If cd[3] is NULL then the analysis will be performed properly, but the repetition 
prevention mechanism will not work (i.e. it may happen that calculation with the same parameters 
is performed several times successively). Normally, a warning message is launched when this 
happens for the first time3. 

 

                                                 
1 This is the case when, for example, all the response is based on the results of a complex numerical analysis, and 
different types of response such as the objective function and additional constraint functions require only different post-
processing of the simulation results, which is much less processing time consuming than the simulation itself. 
2 This mechanism will of course make use of the analysis definition data, which will for the wrapping function contain 
the address of the original analysis function (which must be called to calculate the response) and its definition data 
(which will be passed as argument when this function is called) and auxiliary data to keep track of previous calls of the 
original analysis. This makes sure that the wrapping function can really be used instead of the original at any place, that 
the mechanism is thread safe and that the wrapping function may be called in nested calls. 
3 This can be prevented by calling setprintlevelanfuncnorepeat(0) . 
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The function anfunccountnorepeat  stores optimization parameters and results to 
*(cd[4]) after each call to the original analysis function for calculating the response. At every call, it 
first checks whether the requested response is stored in *(cd[4]), and if it is, it just copies the 
response instead of actually calling the original analysis function (whose address is in cd[0] and its 
definition data in cd[1]). Example 3 shows how to use the mechanism in practice. 

 

Example 3: Use of the wrapping analysis function that prevents successive repetition of 
analysis defined by anfunc  and andata  at the same parameters: 

 
analysispoint anpt=NULL; 
void *cd[4]; 
int ancount=0, numparam=3,calcobj=1, calcconstr=1, calcgradobj=1, 

calcgradconstr=1; 
double obj=NULL; 
vector gradobj=NULL, param=NULL; 
stack constr=NULL, gradconstr=NULL; 
/* Prepare definition data for wrapping function th at will replace the 

original analysis function: */ 
cd[0]=anfunc;    /* set original analysis function */ 
cd[1]=andata;    /* set original definition data */  
cd[2]=&ancount;  
cd[3]=&anpt; 
... 
param=getvector(numparam); 
anfunccountnorepeatsimp(param, &calcobj, &obj, &cal cconstr, &constr, 

&calcgradobj, &gradobj, &calcgradconstr, &gradconst r, cd); 
... 
optimize(...,anfunccountnorepeatsimp, cd);  /* opti mization of response 

defined by anfunc and andata, through wrapping anal ysis function 
that prevents unnecessary repetition */ 

... 
dispanalysispoint(&anpt)    /* don’t forget to de-a llocate the auxiliary 

storage when not needed any more */ 

 
Notes: 
When successively using the same storage (of type analysispoint ) for different 

analyses via definition data of anfunccountnorepeat , make sure that all calculation request 
flags are set to 0 before use with a new analysis. This will enforce actual calculation at the first call 
and prevent eventual use of response calculated by the previously used analysis in the case that 
optimization parameters at which the previous analysis was called accidentally mach the parameters 
at which the new analysis is called. Otherwise, the function is thread safe and suitable for nested 
calls. 

 
A simpler variant of the function exists and is declared as 
 

int anfunccountnorepeatsimp(vector param, int *calc obj, double **addrobj, int 
*calcconstr, stack *addrconstr, int *calcgradobj, v ector 
*addrgradobj, int *calcgradconstr, stack *addrgradc onstr, void 
*cd[3]); 
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The definition data of this function is an array of only three pointers because the storage 

address for storing the last results is not necessary. Instead, the results are stored in a static variable. 
This function is still thread safe (because locking is used), but calling it from parallel threads may 
cause inefficiency because calls from different threads may override the stored data (which may 
also cause excessive re-allocation when response dimensions are not compatible). Because of this, 
the function may in some cases not be able to correctly detect that the same analysis had been 
performed by the previous call in the same thread, and complete calculation will be unnecessarily 
repeated. This simple variant could not be used in nested calls and would block (because of thread 
locking) if we attempt to make nested calls. Nested call would occur for example if the 
anfunccountnorepeatsimp  was called within the original analysis that is used with this 
function (and thus called within it). 

 
 
If we don’t need to take care of successive repetitions of the same analysis, we may want to 

use the analysis that just counts the number of times the analysis is performed. Such wrapping 
analysis is declared as 

 
int anfunccount(vector param, int *calcobj, double **addrobj, int *calcconstr, stack 

*addrconstr, int *calcgradobj, vector *addrgradobj, int *calcgradconstr, stack *addrgradconstr, void 
*cd[3]); 

 
Further explanations are not necessary because the pointers in cd  have the same meaning as 

with anfunccountnorepeatsimp  (and the same meaning as the first three pointers in the 
definition data of anfunccountnorepeat ). 

 
 

3 BASIC BUILDING BLOCKS  

 
This Section describes basic building blocks that are commonly used in higher level utilities. 

These are usually not the most lower level utilities, however they are not meaningful by themselves 
but are used in yet higher level tools for solving specific problems. A typical example is 
implementation of affine co-ordinate transformations. In optimization algorithms, these is used at 
many places: For scaling of variables, for definition of trust region constraints, for deriving 
multivariate weighting functions from one dimensional forms, etc. It is possible and therefore 
meaningful to build a common implementation of affine transforms for all of these tasks in a single 
library module, and this module can then be used as a low lever tool in any of the above mentioned 
higher level utilities. Still co-ordinate transforms are not the lowest level functionality (i.e. just 
above the basic language features), because they rely on a whole set of matrix and vector 
operations. The task of the affine transformation module is to collect all the necessary matrix 
algebra functionality and pack it in such a way that it can be used in a simple way without referring 
to individual operations of the underlying implementation. I.e., an affine transformation is 
represented by a single structure and a corresponding set of operations, which are in the sense of 
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“define parameters of the transformation”, “transform a vector”, “inverse transform a vector”, “set 
expected number of inverse transformations”, “set symmetric property of transformation matrix”, 
etc. The user does not need to care which methods and functions are applied under given 
circumstances. 

 

3.1 Co-ordinate transformations 

 
This topic is so common that it seems appropriate to explain implementation details together 

with some mathematical background1. Here it is necessary to accompany the text with some 
formulas in order to put things precisely. Mathematical terminology in this area completely clear2, 
but since use of programming constructs (such as structured type) is often extended beyond its 
primary scope, one must make clear what is what. 

 
When prescribing some function rule, we deal with vectors of co-ordinates that uniquely 

define points as elements in the function definition domain, which is a subset of a vector space3. 
Stating point co-ordinates is just a way of labeling points in vector spaces, but this way is not 
unique. We can always introduce another indexing system by transforming co-ordinates of the 
space. Co-ordinates of a point in the transformed co-ordinate system are expressed as function of 
original co-ordinates, e.g. 

 
 ( )xFx =~  , (4) 
 

where F should be a continuous one-to-one (bijective) map. Tricky point with co-ordinate 
transforms is that one must know precisely in which co-ordinate system scalar or vector fields are 
specified. This will in general differ from case to case and one of the goals of this Section is to 
make these things absolutely clear. 

 
Where functions are defined depends on the purpose of co-ordinate transforms. One possible 

purpose is to enable general use of a simple function representation. For example, weighting 
functions used in moving least squares are in general functions of difference between the point of 
evaluation and the sampling point that corresponds to a weighting function (see e.g. Sub-section 
5.4.2). In most cases, desirable form of weighting functions allows us to introduce new variables in 
such a way that expressed in new co-ordinates, weighting functions are just functions of the 
distance between the point of evaluation and sampling point (see equations (26) and (27)). This is 
very useful because for the definition of actual weighting functions, we only need to define a scalar 
function of vector variable (not a vector variable) and parameters of transform (such as A and s 

                                                 
1 Usual practice of the library manuals is to elaborate specialized topics in separate documentation while this library is 
intended to cover only the basic framework. However, in the case of linear transforms it is extremely important to 
harmonize notation in such a way that the user is always precisely aware of the meaning of individual quantities. This is 
best achievable without a short mathematical description of the topic with analogous notation used as in the code. 
2 Although in some literature there are differences in use of terms (in particular in engineering books), e.g. the term 
“linear functions” is often used for something what is otherways called “affine functions”. 
3 This discussion is limited to real spaces and thus real co-ordinates. 
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from (27)). This enables much simpler testing of different forms of weighting functions because 
replacement of definitions is performed on the level where it is much simpler. Moreover, we can 
use the same function definition (together with its definition data) for all sampling points while we 
have different transform parameters (such as s and A) belonging to different sampling points, which 
is more meaningful. In this case, definition of functions is bound to transformed co-ordinates while 
final evaluation (values and gradients) is performed on original co-ordinates, and primary role of 
co-ordinate transform is in fact function composition. 

A different situation occurs when we transform design parameters in order to perform 
optimization on transformed parameters (e.g to ensure better scaling in the first place, or to enforce 
bund constraints by sigmoidal parameter transforms). In this case, response function (and eventually 
their gradients) are defined in the original co-ordinate system, while solution procedures will be 
performed in the transformed co-ordinates. Moreover, algorithm parameters such as starting guess 
(and possibly tolerances) are also defined in original co-ordinates. In order to solve the problem, we 
must transform definition of response surface, their gradients and algorithm parameters to 
transformed co-ordinates. When results are obtained, they must be transformed to the original co-
ordinate system to be readable by the user. 

 

3.1.1 Linear transformation of co-ordinates 

 
Let us denote by xi and ix~  co-ordinates of the same point (or vector) written in two different 

co-ordinate systems K and K
~

, respectively. Co-ordinates of a vector in a given co-ordinate system 
are coefficients of linear combination of basis vectors that equals this vector. We will denote basis 

vectors of K by e1, …, en and basis vectors of K
~

 by 1
~e , …, ne~ . Then we have 

 
 iikk xx ee ~~=  , (5) 

 
where we expressed the same point as linear combination of the two sets of basis vectors. Co-
ordinates of a point in a new co-ordinate system are obtained from original co-ordinates by the 
following linear transformation: 
 

 xAxAx 1~~ −==  (6) 
 
or1 jjii xax =~ . Inverse transformation matrix A

~
 transforms co-ordinates in K

~  to co-

ordinates in K: 
 
 =x A x% % . (7) 
 

                                                 
1 We use Einstein’s summation agreement: if an index repeats in the same side of equation then this means summation 
over that index, e.g. ∑= j jijjji xaxa  
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Columns of inverse transformation matrix A-1= A

~
 are co-ordinates of basis vectors of new 

co-ordinate system K
~

 expressed in the original system K: 
 

 jiji a ee ~~ =  . (8) 

 
To check the above formula, we input (8) into (5): kkjijiii xax eeex == ~~~~  (where we have 

summation over i and j according to the summation agreement). Since ei are linearly independent 
basis vectors, coefficients of their linear combinations are unique and we can equate coefficients of 

the same vectors, which gives iijj xax ~~=  or xAx ~~= . Since both sets {ei} and { }ie~  are bases of 

vector space nRI , A is a full rank nn ×  matrix. 
 
If both K and K

~
 are Cartesian co-ordinate systems with orthogonal and normalized basis 

vectors then A-1 and hence A are orthogonal matrices, 
 
 IAA =T . (9) 
 

This also means that scalar products of any two distinct columns (or rows) of A is 0 and scalar 
product of any row (or column) by itself is 11: 
 

 ijkjkijijkik aaaa δδ == ,  , (10) 

 

where 




≠
=

=
ji

jii
ji ;0

;
δ  is the Kronecker symbol. In this case, rows of A are co-ordinates of 

corresponding basis vectors ie~  of K
~

 in K (since they correspond to columns of 1~ −= AA ). Because 

in Cartesian systems co-ordinates are scalar products of vector with corresponding basic vectors 
(i.e. ( ) jjii eeee ⋅= ~~ ), we have 

 
 jijia ee ⋅= ~  (Cartesian systems). (11) 

 
This can be verified as follows: ( )( )kkjjjjii xxx eeeee ⋅== ~~~~ , after equating coefficients at ej we have 

( ) ( ) jjiijji xxx eeee ~~~ ⋅=⋅= , therefore ( ) ijjiji aa =⋅= ee ~~  (because TAAA
~~ 1== − ) and finally 

jijia ee ⋅= ~ . 

 
Transformation of linear operators: 

                                                 
1 This must be true because of the fact that columns of 1−A  correspond to co-ordinates of the basis vectors of the 
second co-ordinate system in the original (cartesian) system, and since basis vectors of both systems are orthogonal and 
of unit length, the above formula must be valid. 
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In a given co-ordinate system, a linear operator is represented by a matrix by which column 
of co-ordinates of original are multiplied in order to obtained co-ordinates of its image: 

 
 uTw =  . (12) 
 
We are looking for matrix representation of the same linear operator in the co-ordinate 

system K
~

 if co-ordinates are transformed according to (6). We must satisfy 
 

 uTw ~~~ =  or ( )uATwA
~= . 

 

We have uATAw
~1−=  and thus from (12) TATA =− ~1 , and finally 

 

 1~ −= ATAT  (13) 
 

3.1.2 Linear (Affine) maps, eigendecomposition and quadratic forms 

 
The most general co-ordinate transformation discussed in this Section is Affine 

transformation, expressed as 
 
 ( )sxAx −=~ , (14) 
 

where A is an arbitrary square ( nn × ) matrix. Without additive term –s, this would be a linear 
transformation. If A has full rank, this is a non-degenerate co-ordinate transformation, i.e. 
transformation is bijective and the dimension of the new co-ordinate system is the same as the 
dimension of the old one. In this case, there exists inverse of A, and we can express original co-
ordinates x with transformed co-ordinates x~ . 

 
Of particular importance are cases where the real transformation matrix A is symmetric. 

Real symmetric matrices have exactly n eigenvalues (not necessarily unique) and corresponding 
orthogonal eigenvectors, which satisfy the equation  

 
 niiii ...,,1, == AAA xxA λλ λ . (15) 

 
Eigenvalues iAλ  are solutions of the characteristic equation ( ) 0det =Ι− λA  Two eigenvectors that 

correspond to different eigenvalues are always orthogonal ( jij

T

i ji λλ ≠∧≠∀= 0xx ). Multiple 

eigenvalues with multiplicity p are multiple zeros of characteristic equations with p corresponding 
linearly independent eigenvectors. Any non-trivial linear combination of these vectors is also an 
eigenvector with the same eigenvalue, and they can be orthogonalized to obtain p orthogonal 
vectors. 

 



 
 

3. Basic Building Blocks   IOptLib User’s Manual 
 

 

 

 

32 
 
 

Every symmetric real matrix A can be written as 
 
 T

AAA UDUA =  (16) 
 
where DA is a diagonal matrix whose diagonal elements are eigenvalues of A and UA is 

orthogonal matrix1 whose columns are the corresponding eigenvectors of A2. The above formula is 
therefore called eigendecomposition (or spectral decomposition) of A. 

 
Matrix A is transformed to diagonal form D by the so-called transform of the main axes,  
 
 UAUDA

T= . (17) 
 
This represent transformation into a new Cartesian co-ordinate system whose basic vectors 

are eigenvectors of A. 
 
A quadratic form is a function of the form 
 

 ( ) ∑∑
= =

==
n

i

n

j
jiij

T xxQQ
1 1

xQxx  (18) 

 
where Q3 is a real symmetric matrix. If Q is positive definite then it can be written as square of 
another symmetric matrix A: 
 

 AAAQ == 2 . (19) 
 
We can perform such linear transformation of co-ordinates that Q is expressed as a sum of 

pure squares in the new co-ordinate system, 
 

 ( ) ∑
=

==
r

i
ii

T xkQ
1

2~~~~ xKxx . (20) 

 
This is performed by transformation matrix UQDQK where UQ is the matrix whose columns are 
normalized eigenvectors of Q and DQK is a diagonal matrix with elements 
 

                                                 
1 A real matrix U is orthogonal when U-1=UT. This means that UUT=UTU=I , i.e. scalar product of two distinct columns 
(or rows) are 0 and scalar products of any row or column with itself is 1. 
2 Transformation of the form GAGA 1~ −=  where G is an invertible matrix is called similarity transform. This 

transform preserves eigenvalues, i.e. A
~

 and A  have the same eigenvalues. If G  is orthogonal then the similarity 
transform is called congruent transform. Beside eigenvalues, this transform also preserves symmetry of the matrix (if 

A  is symmetric then A
~

 is also symmetric). 
3 If the form Q(x)>0 for all x then the form is said to be positive definite (and so is the matrix Q), if it is less than 0 for 
all x it is called negative definite, and if it is greater or equal to 0 it is called positive semi-definite. Necessary condition 
for positive definiteness is that all diagonal elements of Q are positive. Positive definite matrices have positive 
eigenvalues. 
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i

i

i

k
d

Q

KQ λ
=  , (21) 

 
therefore 
 

 

QKQQQK

QQK

QKQ

DUQUDK

xUDx

xDUx

TT

T

=

=

=
−1~

,~

. (22) 

 
We see that coefficients ki can not be just arbitrary, but must have the same sign as the 
corresponding eigenvalues of Q (otherwise there was a negative value under the square root). If we 
set DQK=I  then coefficients in (21) are eigenvalues of Q, i.e. iik Qλ=  or K=DQ. If Q is positive 

definite then we can perform such linear co-ordinate transformation that ( ) 2||||~ xx =Q  by setting 

iid QQK λ1= . 

 

3.1.2.1 Calculation of gradients 

 
We want to calculate a gradient of a scalar function that is defined on transformed co-

ordinates. Note again that ( )sxAx −=~ , 1−= +x A x s% . 
 
If we have a function g defined on transformed co-ordinates and a function h such that 
 
 ( ) ( ) ( )( )sxAxx −== ggh ~ , (23) 
 

then gradient of h is 
 

 ( ) ( )( ) ( )( )Th g g∇ = ∇ − = ∇ −x xx A x s A A x s . (24) 

 
For composition of functions, gradient is  
 

 ( )( ) ( )( ) ( )xxx ggfgf ∇=∇ ' . (25) 
 
If we have, for example 

 
 ( ) ( )( )sxAx −= fw  (26) 

 
then 
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 ( ) ( )( ) ( )( ) ( )
( )sxA

sxA
AsxAsxAx xx −

−−=−∇=∇ Tffw '   (27) 

 
because xxxx =∇ . We can simplify the equation: 

 

 ( ) ( ) ( )' ;Tw f∇ = = −x

x
x x A x A x s

x

%
% %

%
 (28) 

 

3.1.3 Agreements for use of linear (affine) maps 

 
Remark: an old version of this chapter has been saved in the Sandbox in Section 12.1.1. 
 
In the IOptLib, linear (in fact affine) transforms are used for several purposes which include: 

• sampling of response functions in a given domain, which can be obtained by 
transforming a unit ball 

• definition of a restricted region constraint, where the constraint function that ensures 
that the solution is included in the unit ball is subjected to co-ordinate transform 

• definition of weighting functions, which are obtained by co-ordinate transforms of 
rotationally symmetric functions scaled for a unit ball 

 
The above mentioned functions and procedures are the most easily defined and performed 

when the unit ball centered in the co-ordinate origin is the domain of interest. We define the 
transform F such that  

 
 ( )= = +x F x A x s% % , (29) 

 
or 

 
 ( ) ( )1 1− −= = −x F x A x s% . (30) 

 
Affine transform F transforms a unit ball centered in the co-ordinate origin to an hyper 

ellipsoidal region with a center of mass s (Figure 2). In optimization methods that utilize successive 
approximations of the response, such domains are conveniently used for sampling of the response 
and as restricted region on which the approximated problem is solved in the current iteration, 
therefore also the sampling weights are defined in such a way that influence of samples on the 
approximation is significant in the domain of the same shape, centered around the corresponding 
samples. 

 
The (closed) unit ball is defined as 
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 { }2
; 1U = ≤x x . (31) 

 
The ellipsoidal domain obtained by transformation of the unit ball by F is therefore 
 

 ( ){ }1

2
; 1U −= ≤F x F x . (32) 

 
 
 
 
 

2e%   

1e%   

x 

y 

F 

e2 

e1 

s 

x x-s 

x%   

U 

UF 

1 

1 

 

Figure 2: Affine function F that maps n unit ball into an ellipsoidal domain centered around 
s. 

 
Sampling is typically done such a way that the specified number ms of random points with 

uniform probability density over volume of the unit ball are generated, say ix% . These points are then 

transformed to xi by  
 
 ( )i i=x F x% . (33) 

 
In most cases it is more convenient that the sampling points are uniformly distributed over 

volume in the unit ball rather than the transformed ellipsoidal domain, which can be very elongated. 
This is even more obvious when we obtain the samples by solution of the minimal particle potential 
problem1. If the minimal potential problem was used on the ellipsoidal domain that is expressively 
elongated along one main axis, we would obtain almost uniform distribution along this main axis 
and a meaningless zigzagging in other directions. When we want to include previously chosen 

                                                 
1 This ensures that the particles are as far away from each other as possible and they are not concentrated in any part of 
the sampling domains, which can happen by random sampling. 
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sampling points yk in the minimal particle potential problem (in order to avoid oversampling of 
parts of the domain), these points are first transformed by inverse transforms into 

 
 ( )1

k k
−=y F y% . (34) 

 
Then the necessary number m of ix%  are obtained from randomly distributed points in the 

unit ball (say ( )0
ix% ) from solving the minimal particle potential problem involving also the points 

ky% . Points ix%  are then transformed to xi by F. 

 
Restricted region constraints are defined by transforming independent variables of 

constraint function that correspond to limiting the domain to the unit ball. For optimization 
purposes, the unit ball constraint is conveniently defined as 

 

 
2

2
1T = ≤x x x% % % . (35) 

 
The corresponding constraint function is 

 

 ( ) 2

2
1 1T

Uc = − = −x x x x% % % % . (36) 

 
If we want to limit the domain of optimization to the ellipsoidal region obtained from the 

unit ball by F, we must apply Uc  to variables transformed by 1−F  because this function transforms 

the domain of interest to the unit ball (Figure 2). Therefore, the constraint function corresponding to 
the restricted region constraint is 

 

 ( ) ( )( )1
r Uc c −=x F x . (37) 

 
According to (28) and taking into account (36) and (37), gradient of cr is: 
 

 ( ) ( )1

2

;r ic −∇ = = −x

x
x A x A x x

x

%
%

%
 . (38) 

 
Because sampling is performed inside the ellipsoidal domain obtained by application of F to 

the unit ball, it seems reasonable that contours of weighting functions corresponding to individual 
samples will have similar shapes as this domain, but will be centered around the corresponding 
samples. Therefore we can use a similar idea for weighting functions as for the restricted region 
constraint function. We define a template weighting function ( )Uw x%  with concentric contours, 

which decays considerably on the distance 1 from the origin. Actual weighting functions are then 
obtained by applying the template weighting function to co-ordinates transformed by 1i

−F , where Fi 

is a function that transforms the unit ball to an ellipsoidal domain centered around the 
corresponding sampling point. For sampling point xi the corresponding function is 
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 ( )i i= +F x A x x% % . (39) 

 
The weighting function corresponding to the sample xi is then 
 

 ( ) ( )( )1
i U iw w −=x F x . (40) 

 
Because the template weighting function has concentric contours, it can be defined by a function of 
a single variable w(x), i.e. 
 

 ( ) ( )2Uw w=x x% % , (41) 

 
The weighting function corresponding to the sampling point xi is therefore 
 

 ( ) ( )( ) ( )( )1 1

2i i iw w w− −= = −x F x A x r . (42) 

 
 

 
Function w needs to be defined only for non-negative arguments. We usually require that gradient 
of Uw  is continuous in the co-ordinate origin, which means that w must have a zero derivative in 0. 

Commonly used forms for w are Gaussian and reciprocal polynomial (Figure 3): 
 

 

( )

( )

2

,

1
, 2, 3, 4, ...

1

r
G

p p

w r e

w r p
r

−=

= =
+

 (43) 
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Figure 3: Weighting functions of Gaussian form wG(r) and reciprocal polynomial form 
w4(r). 

 
According to (28) and taking into account (42) gradient of the weighting functions are: 
 

 ( ) ( ) ( )1 1

2
2

' ;i iw w − −∇ = = −x

x
x x A x A x x

x

%
% %

%
 . (44) 

 
 

3.1.4 Implementation of linear and affine maps  

3.1.4.1 Transformation type 

Several rules for handling affine (or linear) maps and transformations are implied by the 
transformation data type and the associated functions. These rules must be followed when 
implementing lower level function that operate with this data type. The present Sub-section 
describes the transform types and defines some basic rules. 

 
The user usually uses high level functions and in this way he or she does not interact too 

much with the basic rules. Most of the users can therefore read only the first part of this section and 
then skip to the Section 3.1.4.2, which describes the higher leveluse of linear and affine 
transformations. 

 
The transform data type is defined as 
 

 
typedef struct _lintransfdata { 
  int type,id;     /* type and unique object ID */ 
  int lock;   /* object locking support (to synchro nize access in threads) */ 
  /* Dimensions of the first and the second space, i.e. of inverse  
  transformation matrix Ainv: */ 
  int d1,d2; 
  vector shift;   /* translation vector */ 
  double *a_scal;  /* multiplicative factor for tra nsf. matrix */ 
  vector a;   /* components od diagonal transformat ion matrix in the  
      domain of transformation (there is no such th ing in codomain of 
      transformation). If (...)->A is also defined then diag(a) is left 
      multiplied when performing transformation. */  
  vector ainv;  /* Inverse of a (components are rec iprocal comp. of a) */  
  matrix A;   /* transformation matrix */ 
  unsigned long A_flags;   /* flags describing prop erties of A */ 
  /* Spectral decomposition: */ 
  vector A_sd;  /* components are eigenvalues of a */ 
  matrix A_sU;  /* columns are eigenvectors of A */  
  /* QR decomposition: */ 
  matrix A_Q;   /* orthogonal factor of QR decompos ition of A */ 
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  matrix A_R;   /* upper triangular factor of A */ 
  /* LDLT and UL decomposition: */ 
  matrix A_L;   /* lower triangular factor in LDLT decomp. */ 
  matrix A_U;   /* upper triangular matrix in LU de comp. */ 
  vector A_D;   /* diagonal factor in LDLT decomp. */ 
   
  /* Inverse of A: */ 
  matrix Ainv; 
   
  matrix Q;   /* coefficients of quadratic form */ 
  vector q;   /* coefficients of pure quadratic for m (Q diagonal) */ 
  vector dQ;  /* coefficients are eigenvalues of Q */ 
  matrix UQ;  /* columns are eigenvectors of Q */ 
 
  /* Function definition that enables direct use fo  transform for 
  composition of functions: (consider whether this is a good solution; maybe 
  the opposite approach would be better - standardi ze the form of the  
  definition data for functions such that they incl ude the lintear  
  transformation structure) */ 
  int functype; 
  void *func; 
  void *funcdata; 
  void (*dispfuncdata) (void **); 
  double *val;    /* used when func==NULL */ 
  vector gradval; /* used when func==NULL */ 
 
  /* Auxiliary vectors & matrixes: */ 
  vector 
    vecaux1,  /* dim. (...)->d1 */ 
    vecaux2,  /* dim. (...)->d2 */ 
    vecauxinv1, 
    vecauxinv2; 
  matrix  
    mataux1, 
    mataux2, 
    matauxinv1, 
    matauxinv2; 
  /* Auxiliary storage of matrices & vectors: */ 
  stack matstore; 
  stack vecstore; 
} *lintransfdata; 
 

 
The usual rule applies that everything what is on the structure should be dynamically de-

allocated together with it (when de-allocation is called, see Section 3.1.4.2), except for the fields for 
which de-allocation functions are explicitly specified (in this case, a corresponding NULL de-
allocation function means that the corresponding pointer will be de-allocated elsewhere). 

 
The structure holds all the data that is directly bound to the maps (divided to definition and 

derived data) as well as auxiliary storage data for functions that use the structure. For derived data 
that is bound to parameter transform (such as factors of various decompositions of the 
transformation matrix), there is a rule that if these data are allocated then they must also be correctly 
calculated according to the current definition data. Whenever definition of the map is changed, any 
allocated derived data must be either re-calculated or de-allocated. In order to safely imply this rule, 
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only the set of functions that are provided by the module should be used. If new functionality is 
required, then it should be implemented by using the function from the module or new functions 
should be implemented within the module that strictly follow the rules. 

 
Some derived quantities (such as factors of decompositions) may be calculated 

automatically when needed within functions that operate with the map.  
 
The affine map that is represented by the data structure specified above is 
 
 ( ) ( ) ( ) ( )1 1 1m m n n m× × × ×= +y A x b  . (45) 

 
Dimensions are contained in the following fields of the transformation data structure: 

 
d1=n=A->d2  
d2=m=A->d1  
 
Definition data: 
 
Fields shift , a_scal , A and a are considered basic definition fields of the 

transformation.  
However, A or a may be replaced by its decomposed form (e.g. factors A_Q and A_R), and a_inv  
of A_inv  may define the inverse of A instead of A itself. These are all legal situations that must be 
gandled by the function working with transformations. 

 
Basic definition fields define s (=shift ) and the transformation matrix A from equation 

(14). The following rule for definition of A is used: 
 
 A = A’ (a_scal  | 1) = ( A | I  ) ( diag(a) | I  )  (a_scal  | 1) . (46) 
 
This means that any of the factors a_scal , a and A can be defined or not and if they are 

not defined then the corresponding unity for multiplication is taken instead. The transformation 
matrix is defined as product of all these factors. It is important that the eventual diagonal factor 
diag(a) (when defined) is right-multiplied with the matrix factor A, which means that when a map is 
applied to a vector, it is first multiplied by the diagonal factor. 

The scalar factor provides the possibility of isotropic scaling apart from multiplication by A, 
which can be useful e.g. in restricted step algorithms. The diagonal term allows scaling of each 
component separately, but in the domain of the map (not in co-domain). This can be useful if we 
deal with very badly scaled physical quantities (i.e. numbers corresponding to different quantities 
are several orders of magnitude different) and scaling is used as a tool for pre-conditioning 
numerical operations that are performed on these quantities. Another benefit of using a is boosting 
efficiency when the transformation matrix is actually diagonal (in this we don’t define A, and 
because of this all matrix computations actually fall away). 

Of course, actual computations are performed in a more efficient way than it could be 
concluded from (46). If some factor of this equation is not defined (i.e. it is considered unit for 
multiplication in the equation) then the corresponding multiplication is skipped. 
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It is important to remember that1 
 
 'AA c=  (47) 
 

where  
 

 c = (a_scal  | 1) (48) 
 

Derived data: (to be supplemented)  
Ainv  holds inverse of A’ (i.e. not of actual A , but of A divided by c , which is a 

multiplicative factor that is defined by the field a_scal  or is 1 when this field is NULL). If A ’ 
(and thus A) is diagonal (which is when a is specified) then inverse of A’ is not kept and Ainv  will 
be NULL (because it is very simply calculated). 

Field UA holds an orthogonal matrix whose columns are normalized eigenvectors of A’ (UA 
in equation (16)) and dA holds a vector of corresponding eigenvalues of A ’ ((1/c)DA). Again, if A ’ 
is diagonal (a is specified) then fields UA and dA will be NULL, since in this case UA=I  and 
DA=diag(a). 

 
Auxiliary data: 
Auxiliary matrices and vectors are used in order to save time for allocation and de-allocation 

on account of additional space that remains allocated until it is released (explicitly or implicitly, e.g. 
when the transformation matrix is de-allocated). For example, when a vector is transformed, it can 
be multiplied by a matrix that can consist of several factors (equation (46)). Successive 
multiplications can yield vectors of different lengths, which can not be stored at one location. 
Therefore, when necessary, the auxiliary matrices and vectors are used for storing immediate results 
of operations. 

 
Auxiliary matrices and vectors are normally used only by lower level operations and users 

of the library will not have to deal with them. The rule is that auxiliary matrices or vectors are 
allocated the first time they are needed. They can then be de-allocated explicitly or implicitly when 
the whole transformation data structure is de-allocated. Programmers of lower level functions that 
use auxiliary matrices and vectors must be very careful about the dimensions. Objects of 
appropriate dimensions must be used (this is not an issue when the domain and co-domain of the 
map have the same dimensions), otherwise the necessary resizing would annihilate the benefits 
gained by using these objects. When used in functions dealing with the transformation, dimensions 
must be checked because it is not guaranteed that they will match (i.e. when the transformation is 
re-defined in such a way that dimensions of the transformation matrix change, it is not guaranteed 
                                                 
1 A question is “Why to specify a separate scaling factor while it could be included in A in which case special treatment 
of A’ is not necessary?” Well, it is always possible not to define the field a_scal , in which case the two matrices are 
equal. Reason for introducing an optional scaling factor is that derived data can be re-used when the transformation 
matrix is only scaled, which is often beneficial. Such treatment causes some negligible computational overhead (e.g. 
checking whether additional scaling factor is defined). There is also some implementation overhead, but this should not 
be a problem because all the basic tools needed to handle transformations are already there and implemented 
consistently. 
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that previously allocated auxiliary matrices and vectors are resized or de-allocated). Table 2 lists 
dimensions of the auxiliary matrices and vectors. 

 

Table 2: Auxiliary storage with dimensions. Note that vectors that do not have the suffix inv 
are defined in the domain of the map and have dimension d1 , and those with suffix inv are 
defined in its codomain and have dimension d2. Matrices that do not have the suffix inv act on 
(can be left multiplied with) vectors in the domain of the map and thus have dimensions d2*d1  
(the same as the transformation matrix A), and matrices with suffix inv have dimensions 
d1*d2 . 

 
  Field Dimensions Remarks 

Auxiliary vectors and matrices 
vecaux1 d1  
vecaux2 d1  
vecauxinv1 d2  
vecauxinv2  d2  
mataux1 d2*d1  
mataux2 d2*d1  
matauxinv1 d1*d2  
matauxinv2 d1*d2  
   

 
 
 
 
For other temporary storage, there are stacks of matrices matstore  and stack of vectors 

vecstore . Matrices and vectors for temporary auxiliary storage should be popped from these 
stacks and pushed back to them when not needed any more. Derived matrices and vectors are 
typically stored in these stacks. 

Lock: 
Field lock  is intended for locking the object in order to prevent other threads to use it. 

Functions that use the data on the object (either for reading or modification) should lock it, but 
should also instruct the called lower level utility functions not to lock the object themselves by the 
appropriate argument, or call function version that do not perform locking1. After locking, the 
object must always be unlocked (see Sub-section 9.1.3).. 

 

Table 3: Fields of the lintransfdata type. 

 
  Field Meaning Remarks 

                                                 
1 Usually, utility functions that deal with objects of type lintransfdata  have an extra argument that indicates 
whether the object should be locked before access to its data or not. Some functions can not have this extra argument 
because the function form is prescribed. In such cases, there are usually two versions of a function, one that performs 
locking and one that does not. 
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Definition data 
a_scal c , eq. (47) c=1 if NULL 
a A’=A diag(a)  
A A’ if a==NULL If a!=NULL, a is used 
   

Derived data 
Ainv A’ -1 = c A-1  
UA UA = UA ’ (16)  
dA (1/c) DA = DA’=diag(dA) (16)  
   
   
   
   
   
   
   
   
   
   
   
   

 
 
 

3.1.4.2 Management utilities 

 
This section describes allocation and de-allocation of transformation objects, definition of 

the transformation parameters, enforcement of calculation of auxiliary data such as inverse 
transformation matrix or factors of decomposed transformation matrix, etc. 

 
 

3.1.4.3 Mathematical operations 
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3.1.5 Restricted step constraints 

3.1.5.1 Introduction 

 
We will try to express the restricted region constraints in such a way that in some other co-

ordinates it is reduced to the unit ball constraint (57). With other words, 
 
 ( ) ( )( ) ( ) 012

2
≤−== xFxFx ucc . (49) 

 
Here F represents a co-ordinate transformation, in particular we are interested in Affine 

transformations of the form (14) 
 
 ( ) ( )sxAxFx −==~  (50) 
 

with inverse transformation 
 

 ( ) ( ) sxAxFx +== −− ~~ 11 . (51) 
 
The feasible region constraint is then  
 
 ( ) 12

2
≤− srA  (52) 

 
 
Feasible region of the constraint (49) with F of the form (14) is shown in Figure 4. In the 

transformed co-ordinates, the constraint transforms to unit ball constraint. Therefore, F must 
transform the feasible region to unit ball, and F-1 transforms an unit ball to the feasible region. 

 
 

s 

x r-s 

x 

y 

x~  

y~  

x~  F-1 

1 

1 

 

Figure 4: Feasible region of the restricted step constraints in the original (left-hand side) and 
transformed (right-hand side) co-ordinate system. 
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Some examples of definition of the feasible region: 
Now let us say that the restricted region (i.e. feasible region of the restricted step constraint) 

is a circular region with radius r centered around s. If we want F to transform the restricted region 
to the unit ball then A must be of the form 

 

 IA
r

1= . (53) 

 
If the restricted region is ellipsoid with main axes parallel to the co-ordinate axis and with 

half-axes }...,,,{ 21 nrrr  then A has the form 
 

 



























=







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...,,

1
,

1
2

1

21

A  (54) 

 
Further, let us say that Q is a symmetric positive definite matrix and restricted region is 

defined as a set of point for which a quadratic form of the form (18), but centered in s, is less of 
equal to 1: 

 
 ( ) ( ) ( ) 1≤−−=− sxQsxsx TQ  (55) 
 
If we write Q=ATA then we have 
 

( ) ( )( ) ( ) ( ) 12

2
≤−=−−=− sssQ T xAxAxAsx , 

 
which is precisely (52). Since Q is symmetric and positive definite, A is also symmetric, therefore 
constraint (55) corresponds to the constraint (52) if 
 

 2AQ = . (56) 
 
Form  (55) may be very useful since the constraint is bound to the value of quadratic form, 

which may be e.g. the quadratic term of a quadratic approximation of some function and to which it 
is sensible to tie the restricted step constrain. Obviously, a problem appears when Q is not positive 
definite, since in this case the feasible domain stretches infinitely long in some cases. What we will 
usually do is to make eigentransform of Q, change the sign of eventual negative eigenvalues and set 
a lower bound for small eigenvalues. In this way, a new Q is performed that is positive definite and 
has eigenvalues bounded below. It may be sensible, for example, to accept the smaller eigenvalues 
as a given portion of the maximal eigenvalue. If parameters are very badly scaled then we might 
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perform pre-scaling. This will enable more sensible determination of the largest (by absolute value) 
eigenvalues1.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.1.5.2 Implementation   

 
 
 
 
 
 
 
 
 

3.1.5.3 Unit ball constraint 

A special case of the restricted region constraint is the unit ball constraint. This constraint 
requires that parameter vector must be contained in a zero centered unit ball, i.e. 1≤r  or 

formally, 
 

                                                 
1 The ratio between individual eigenvalues of response Hessians will change over the design space, but by bad scaling 
we can promote expressive dominance of eigenvalues whose eigenvectors are parallel to over-scaled co-ordinate 
directions.  
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 ( ) ( ) 011 ≤−== rrr ucc . (57) 

 
This constraint is implemented by the analysis function unitballconstr , which defines 

a single constraint and no objective functions. 
 

3.1.6 Restricted region constraints - old implementation 

 
The domain constraint is implemented by the following analysis function: 
 
int restrictedstepconstr_olf(vector param,int *calcobj,double **addrobj, 
    int *calcconstr,stack *addrconstr, 
    int *calcgradobj,vector *addrgradobj, 
    int *calcgradconstr,stack *addrgradconstr,void **cd); 

 
The function is of a standard type for analysis function, i.e. analysis_bas_f . Parameter cd is 

a pointer to the data that contains the parameters defining the restricted region. It must be a table of 
at least 5 pointers with the following meaning: 

cd[0]: s (type vector) 
cd[1]: r (type double *) 
cd[2]: d (type vector) 
cd[3]: A 
cd[3]: Flags (type int *), default 0. 
 
 
 
 

4 MODIFICATION AND TRANSFORMATION OF 
OPTIMIZATION PROBLEMS  

This section describes utilities for setting up definition of an optimization problem by 
modification, combination or both of one or several other definitions. It is understood that definition 
of an optimization problem consists of definition of its objective and constraint problems, which is 
in the IOptLib done by defining a standard analysis function and eventually its definition data 
(Section 2.3.1). 

In IOptLib, tools for several common ways of definition of optimization problems by 
combination and modification of other definitions are implemented. This is of particular importance 
for construction of complex approximation based algorithms on which much focus of the library is 
put in its initial stage of development, however it is also very useful for construction of other classes 
of algorithms such as penalty algorithms, all kinds of restricted step algorithms, and several other 
algorithms such as the NLP Simplex algorithm[1].  
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4.1 Combining objectives and constraints defined by different 
analysis functions 

 
The following function calculates response functions as combination of response functions 

defined by several analysis functions and their data: 
 

int combinedanalysis (vector param,int *calcobj,double **addrobj,    int 
*calcconstr,stack *addrconstr, int *calcgradobj,vec tor *addrgradobj, 
int *calcgradconstr,stack *addrgradconstr, stack cd ); 

 

 
The function is of standard analysis function type an_bas_f  , only that the last argument is a 

stack containing definitions of individual analysis and the corresponding parametric data. This 
mechanism enables defining new problem on the basis of simpler problem, e.g. one can combine 
the objective function one problem, defined by its analysis function and data, with the constraints of 
another problem. 

 
Elements of the stack cd  are pointers to data structures, which are of type ancombstruct  

defines as follows: 
typedef struct _ancomb { 
    int type,id;     /* type and unique object ID * / 
    int flags;       /* flags defining how response  functions are combined */ 
    double factor, 
           shift,   /* shift and scaling factor of values */ 
      constrfactor,  /* weight. factor for constrai nts (if 0 then factor is 

taken) */ 
      constrshift;   /* shift for constraint functi ons */ 
    int nparam,nobj,nconstr; 
    analysis point anpt;    /* storage of analysis results */ 
    analysis_bas_f anfunc;  /* analysis function */  
    void *andata;  /* analysis definition data */ 
    vector auxvec;  /* auxiliary vector */ 
} *ancomb; 

 
There are tools for creating the definition data (argument cd ) for the combined analysis 

function combinedanalysis ) and are described in the Subsection 4.1.1.1 below. 
 
 
Field flags  is an or-ed combination of individual basic flags that define how the response 

of an individual analysis is combined to form the overall response. The basic flags are also defined 
as macros in optbas.h : 

ANCOMB_SUMOBJ – objective function of this analysis, shifted by shift and then multiplied by factor, is 
summed to the objective function of the combined analysis (formed anew if necessary)  

ANCOMB_SUMCONSTR – constraint functions of this analysis, shifted by constrshift and then multiplied by 
constfractor, are summed to all constraints of the combined analysis (formed anew if necessary)  

ANCOMB_SUMOBJTOCONSTR – objective function, shifted by shift and then multiplied by factor, is 
summed to all constraint functions of the combined analysis  
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ANCOMB_SUMCONSTRTOOBJ – constraint functions of this analysis, shifted by constrshift and then 
multiplied by constrfactor, are summed to the objective function of the combined analysis (formed 
anew if necessary) 

ANCOMB_ADDCONSTR – constraint functions of this analysis, shifted by constrshift and then multiplied by 
constrfactor, are added as new constraints to the combined analysis (formed anew if necessary)  

ANCOMB_ADDOBJTOCONSTR – objective function of this analysis, shifted by shift and then multiplied by 
factor, is added as a constraint function to the response of the combined analysis.  

 

The following is not implemented yet: 
ANCOMB_PENALTYSQR – Not implemented yet. Expected behavior: A square function of 

constraint functions of this analysis, multiplied by factor and shrinked by shift (such that shift equals 
1) are added to the objective function of the combined analysis.  

 
 shifted by shift, are added up to the corresponding constraints of the combined analysis, e.g.  (formed anew 

if necessary) 
ANCOMB_PENALTYSQRHALF – Not implemented yet. 
ANCOMB_SUMPENALTYADAPT - Not implemented yet. 
ANCOMB_SUMPENALTYEXP - Not implemented yet. 

 
Combination of response functions is an important mechanism, used e.g. in the following 

situations: 
• To add constraints which restrict the step size in the restricted step method, when 

solving the restricted approximate sub-problem 
• To make a weighted sum of objectives 
• To form constraints from the objectives, e.g. in the minimal potential energy 

problem of charged particles, we can specify that the domain constraint is defined by 
some specific contour of the Rosenbrock problem. 

 
The combinedanalysis  function first runs all individual analyses and checks the 

corresponding flags in order to calculate the number of constraints and whether the objective 
function is defined or not. This is then used in the allocation of space for the result of the combined 
analysis, which is performed by the prepanfuncbas function (Sub-section 2.3.2). 

Finally the results of individual analyses are combined in order to calculate the results of the 
overall combined analysis. First, the objective function and its gradient (if applicable according to 
whether the combined objective function is defined and according to the flags) are initialized to 
zero. Next, all results (either from objectives or constraints) of individual analyses are picked that 
define the constraints of the combined problem, and stored at appropriate locations. Finally, the 
values that should be summed to constraint or objective functions are picked and added to the 
current values. 

 
Remarks 
The mechanism of combination of analyses is implemented in a very general way. Usually 

only simple combinations will be used, e.g. combination of response defined by one analysis 
function with constraints defined by another one (typical example for this is addition of restricted 
region constraints to the approximated analysis). The purpose of generality is to implement all 
possible combinations once for always and in one place in order to reduce complexity for users of 
the library. The price paid for that is complex implementation and an inevitable fact that some 
uncommon combinations will not be tested for a long time. This makes the possibility of hidden 
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errors high. When using uncommon combinations, please test the functionality of combined 
analysis before using it, and in the case of discovered errors inform the developers of the library. 
Operation of the analysis combination system can be tested in advance by the testancomb 
function. One should see the source code of the function for details. 

Addition of penalty terms in place of constraints is not yet implemented, therefore the flags 
ANCOMB_PENALTYSQR, ANCOMB_PENALTYSQRHALF, ANCOMB_PENALTYADAPT, 
and ANCOMB_PENALTYEXP may not be used. It is not yet decided whether the addition of 
penalty terms will be supported by the mechanism for combining analyses or not. Currently it is 
still possible that this will be handled by a separate mechanism.  

For individual analysis, it is illegal to set the flags that would imply calculation of given 
response functions of that analysis if these functions are not defined. For example, if the objective 
function is not defined for a given individual analysis, the flags ANCOMB_SUMOBJ, 
ANCOMB_SUMOBJTOCONSTR, and ANCOMB_ADDOBJTOCONSTR may not be set for this 
analysis. 

A specific response of an individual analysis can have more than one role. For example, an 
objective function can be added to the objective function of the combined response and ad the same 
time represent a constraint in the combined response. Although admissible, such use is not 
encouraged. If we really need such combined response, it is advisable to include that particular 
analysis twice, each time by defining another role for the objective function of the response. When 
doing this, one must take care about specifying whether the analysis definition data is de-allocated 
together with the stack defining the combined data, in order to de-allocate the same definition data 
only once. 

 

4.1.1.1 Preparation of the combined analysis  

 
 
 

stack combcd=NULL; 
addancomb(&combcd,…) 

 
 
De-allocation of the stack: 
 

dispstackallspec(&combst,(void (*) (void **)) dispa ncomb); 

 
 

4.1.1.2 Open questions for the mechanism of combined analyses 

The first open question for combining analyses is how to treat those kinds of individual 
response that are not defined for some analysis function, but are assumed by the flags. For example, 
one of the analyses involved in the evaluation of combined response does not define the objective 
function, but its flags request that the objective function of this analysis is added to the objective 
function of the combined problem. Currently this situation will generate an error that will be 
reported by the function combinedanalysis  . On one hand this imposes less freedom (e.g. the 
user of the system must take care about which response is defined for which problem). On the other 
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hand, this is more strict what regards detection of unintended situations (reflected as errors or other 
kind of exceptional situations). Currently, we in favor of a stricter system, i.e. flags that are related 
to calculation of a given type of response (i.e. objective or constraint functions) may be set for a 
given individual analysis only if this kind of response is actually defined for that analysis, and the 
opposite is regarded an error. 

 
Another open question is whether to include addition of penalty terms to objective function 

in the mechanism of combined analysis. One argument to do this is to make the mechanism of 
combining problem definition very general and versatile. The first argument against this is that the 
complexity of implementation is increased in this way, but for this specific argument the limit of 
when the things become too complex to justify the benefits of generality is very intuitive and would 
probably be defined differently by different problems. A better founded argument against this 
functionality lies in the penalty business itself. The mechanism for combining response is somehow 
too weak for the implementation of what we need for construction of any kind of penalty functions. 
This is because the types of penalty functions must be defined in advance with this kind of 
mechanism. For true flexibility when defining the penalty function, one should have the ability of 
arbitrary definition of penalty terms as the function of penalty parameters and constraint functions. 
Therefore, currently it is more accepted opinion that construction of penalty functions should not 
rely on the mechanism of combining different response, but should be implemented specially for 
this purpose.  

 
In order to recapitulate: Mechanism of combining analyses and constraints should be used 

only for simple combinations of objective functions and constraints of individual analyses into 
response of the combined analyses. Flags that define how response of individual analysis is 
combined should be consistent with what can actually be calculated by a specific analysis. More 
complex forms of combination (such as e.g. construction of penalty functions where penalty terms 
can be arbitrary function of constraints and penalty parameters) must be implemented separately.  

 

4.2 Handling of bound constraints   

 
Sometimes we want to separately specify bound constraints in optimization problems of 

form (1). In this case, in addition to constraints defined by constraint functions ci(x) and cj(x) from 
equation (1), we have bound constraints of the form 

 
 , 1, ...,k k kl x r k n≤ ≤ =  . (58) 

 
In the above equation, lk specify the lower bounds and rk specify the upper bounds on optimization 
parameters, and they are arranged in vectors l and k. In some cases, bounds will be defined only for 
particular parameters, for some of which only minimal (lk) or only maximal (rk)

1 value is defined. 
For the sake of convenience in implementation of computational procedures, we will use in such 

                                                 
1 In this notation, letter l is used as “left” and r as “right”. 
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cases the formula (58) as if both bounds are defined, and will set kl = −∞  or kr = ∞  for those 

bounds that are not defined1. 
 
There are various possible reasons for  stating bound constraints separately. One reason is 

just for convenience, since it is easier to define just the vectors of lower and upper bounds than to 
explicitly state constraint functions that would imply respect of the bounds at problem solution. 
Another reason is that some algorithms can treat simple bound constraints much more efficiently 
than other types of (generally nonlinear) constraints, and it is sometimes easy to guarantee within an 
algorithm that bound constraints are never violated in any point where the response is evaluated. 

 
The Investigative Optimization Library provides the following utilities for handling bound 

constraints: 
• Implicit addition of constraint functions that imply bound constraints 
• Addition of penalty terms related to bound constraints 
• Transformation of optimization parameters in such a way that bound constraints are 

satisfied 
 
There is a special data structure of type boundconstrdata  designed to support the 

related operations. Each individual utility can be used to build higher level functionality. In 
addition, a modified analysis function is provided, which modifies the original analysis in such a 
way that any combination of the above operations is performed, according to specifications on the 
bound constraint structure. This analysis function will often be used in optimization algorithms that 
will include separate handling of bound constraints and will provide a high level tool to algorithm 
designer, which can be utilized for easy and automatic use of pre-implemented utilities for bound 
constraint handling. 

 
Utilities for handling bound constraints are described in more details below. Example 

application is the nonlinear constrained simplex algorithm with ability of handling bound 
constraints, which is described in [1]2. 

 
 

                                                 
1 In computer implementation, infinity will be replaced by some large number. Typically the number above which 
values are considered infinity will be specified together with lower and upper bounds, or some default value will be 
assumed such as 1020. 
2 This algorithm also describes application of C0 exact penalty functions, which can be used in direct search methods 
such as the simplex algorithm. 
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4.2.1 Combination of discontinuous penalty functions and transformation 

of co-ordinates 1 

4.2.1.1 Discontinuous exact penalty functions 

When only comparison of the objective function at different parameters is performed by the 
optimization algorithm (such as e.g. the Nelder-Mead Simplex method for unconstrained nonlinear 
minimization), the method may under some circumstanced still work in the case of diccontinuity of 
the objective function. We can add jump discontinuities to the objective function, and this does not 
affect the efficiency of the method.  

 
Let us denote fm(x) the modified objective function with added jump discontinuities. As long 

as 
 

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 2 1 2

1 2 1 2

m m

m m

f f f f

f f f f

< ⇒ <

= ⇒ =

x x x x

x x x x
, (59) 

 
the minimum of fm is the same as the minimum of f. The above relation is valid if we define the 
modified objective function in the following way (Figure 5): 
 

 ( ) ( )
( )

;
; 0

;
m

f c
f h

f h c

<= >
+ ≥

x x
x

x x
 . (60) 

 
This function is obtained from f by adding to it a positive constant within the following domain: 
 

 ( ){ }| f c+Ω = ≥x x . (61) 

 
Edge of this domain +∂ Ω  is the level hypersurface (isosurface in 3D, isoline in 2D) of f. 

 
 

                                                 
1 Remark: this section needs cleaning in order to match the standards of this document regarding clearness and 
conciseness. 
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Figure 5: Original and modified objective function. 

 
The fact that modification (60) that introduces a jump discontinuity does not change the 

performance of the algorithm indicates that the method could be efficiently modified for solution of 
constraint problems by forming a discontinuous exact penalty function. Exact penalty function is 
obtained by adding a penalty term such that a minimum of the obtained penalty function 
corresponds to the constraint minimum of the original problem. Solution of the original problem 
can then be obtained by finding a minimum of the penalty function. 

 
When only inequality constraints are present, the penalty function can be formed by addition 

of penalty terms for each constraint in the following way: 
 

 ( ) ( ) ( )( ); ;p p p i p
i I

f f h c
∈

= +∑x p x x p , (62) 

 
where the penalty terms can be defined for example as 
 

 { }( ) 0; 0
, , ; 0 0

; 0
i

p i
i i

c
h c k h h k

h k c c

≤
= ≥ ∧ ≥ + >

 . (63) 

 
Non-negative penalty parameter k and h must be large enough if we want that fp represents 

an exact penalty function. In the sequel, we define more precisely the conditions that the penalty 
function is exact penalty function. 

 
We usually require  
 

 ( )0; 0p ph =p . (64) 
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It is clear that in the infeasible region where ( ), 0ii I c∀ ∈ >x , the derivative of h with respect to 

the violated constraint must be positive, i.e. 
 

 
( );

0 0
p ph c

c
c

∂
> ⇒ >

∂
p

 . (65) 

 
However, this is not a sufficient condition that the penalty function has a local minimum in the 
solution of the constrained problem. The derivative must be large enough in order to compensate for 
eventual falling of the objective function as the constraint function grows. What one needs to 
achieve is that in the infeasible region, the dot product of the gradient of the penalty function with 
the gradient of any constraint function belonging to a violated constraint, is positive. 

 
The sufficient condition that the penalty function is exact (i.e. it has a local minimum in the 

solution of the original constrained optimization problem) is the following: There must exist a 
neighborhood ε of the solution *x  such that in each point of the neighborhood, the gradient of the 
penalty function has positive dot product with gradients of all constraint functions which are greater 
than zero (i.e. belong to violated constraints) in that point. In this way, we can find a neighborhood 
of *x  such that a descent path exists from any point in this neighborhood to *x . The condition can 
be expressed in the following way: 

 

 ( ) ( ) ( )
, ,

0 ; , 0i p p i

i I

c f c

ε∀ ∈ ∀ ∈

> ⇒ ∇ ∇ >x

x

x x p x
 . (66) 

 
The above equation says that the directional gradient of the penalty function must be positive in the 
direction of the gradient of any violated constraint. From (62) we have 
 

 ( ) ( ) ( )
( )( )

( );
;

i

p
p p i

i I c c

h c
f f c

c∈ =

∂
∇ = ∇ + ∇

∂∑x

x

p
x p x x  (67) 

 
Equation (66) defines the condition that the penalty function has a local minimum that 

corresponds to the solution of the original constraint optimization problem. From the algorithmic 
point of view this is not sufficient. We want to ensure that minimization algorithm applied to the 
penalty function will actually yield the local minimum that corresponds to a local solution of the 
unconstrained problem (since the penalty function can have several local minima or can even be 
unbounded below). In our case we will apply the unconstraint Nelder-Mead simplex algorithm, but 
the same reasoning applies to application of other algorithms. It is intuitively obvious that if the 
region ε on which (66) holds is larger, the applied minimization algorithm will converge to the 
solution of the original problem from a larger region. Running the algorithm from a starting point 
that is far from the region where (66) holds will more likely cause it to diverge (in the case that the 
penalty function is unbounded below) or converge to a local minimum that is not a solution of the 
original problem. 



 
 

4. Modification and transformation of optimization problems   IOptLib User’s Manual 
 

 

 

 

56 
 
 

 
The best is if the condition (66) holds everywhere. Considering equations (66) and (67), in 

order to achieve that, the function hp(c;…) must grow sufficiently fast with its c. In this way, the 
second term in (67) can compensate for eventual negative projection of the gradient of the objective 
function on the gradients of violated constraints. However, making  hp(c;…) grow too fast close to 
c=0 would introduce ill-conditioning in the minimization of the penalty function. We must therefore 
look for a suitable compromise, which is not trivial in some cases. 

 
While addition of discontinuous term of the form (60) does not affect the performance of the 

Nelder-Mead simplex method, addition of penalty terms of the form (62) can significantly reduce 
its efficiency. This is because the penalty terms limit the space where the simplex moves, and the 
simplex makes more rejected trials when hitting sharp growth of the penalty function at constraint 
boundaries. 

 
A disadvantage of the penalty function generated by hp of the form (63) is that it is difficult 

to fulfill the condition (66) on a large sub-domains of the infeasible domain in the cases where the 
objective function falls progressively or when the constraint functions grow regressively with the 
distance from the zero level hyper-surfaces of constraint functions. This can be alleviated by 
making hp grow progressively with increasing positive argument my adding exponential or higher 
order monomial terms, e.g. 

 

{ }( ) 2 3 4

0; 0

, , ; 0 0
exp ; 0

4 8 16 64

i

p i i i i i
i i

c

h c k h h kc c c c
h k c c

≤


 = ≥ ∧ ≥        + + + + + >                  

 . (68) 

 
Increasing denominators take care that higher order terms contribute significantly only when 

the constraint functions are large enough, which makes minimization of the penalty function less ill 
conditioned. However, this is not so important when the Nelder-Mead simplex method is used for 
minimization of the penalty function, because this method only makes comparisons of function 
values and does not make use of higher order function information. 

 

4.2.1.2 Strict respect of bound constraints by parameter transformation   

 
This section describes how violation of bound constraints can be prevented during 

minimization by the simplex method. This is done by a new analysis function, which shits 
parameter components that violate bound constraints on interval limits, calculates the objective and 
constraint functions in new points, and adds a penalty term that depends on how much the 
constraints were violated. 

 
This procedure should be significantly changed for algorithm that uses function 

approximations to increase the speed. This is because the procedure introduces discontinuities in the 
derivatives at constraint bounds. 
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Let us say that we are solving the problem (1) with only inequality constraints and with 
additional bound constraints on the parameter vector: 

 
 , k k kk l x r∀ ≤ ≤  . (69) 

 
In many cases, the bound constraints are defined only for particular parameters, for some of which 
only minimal (lk) or only maximal (rk)

1 value is defined. For the sake of convenience in 
implementation of computational procedures, we will use the formula (58) as if both bounds are 
defined, and will set kl = −∞  and kr = ∞  for those cases where the bounds are not defined. 

 
Let us say that a direct analysis is called at parameters x={ x1, x2, …, xn} where some of the bound 
constraints are violated. We actually run the analysis at modified parameters x% , which are obtained 
by correction of actual parameters (at which the analysis is requested) in such a way that  which are 
defined in such a way that bound constraints are satisfied: 
 

 

;

, ;

;

k k k k

k k k k

k k k

x l x r

k x l x l

r x r
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%    (70) 

 
We then modify the value of the objective function in the following way: 
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1
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n
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where 
 

 

( ) ( )

( ) ( )

; ;

0 ;

; ;

0 ;

l

r

p k k p k
k

p k k p k
k

h l x l
h

otherwise

h x r r
h

otherwise

 − > −∞= 


 − <∞= 


p
x

p
x

  (72) 

 
and kp is a function for generation of penalty terms of a convenient form such as (63) or (68). 
Constraint functions are not modified and are simply set to the values of constraint functions at x% : 
 

 ( ) ( ), i ii I c c∀ ∈ =x x% %  . (73) 

 
Expression (72) is addition of penalty terms as in (62) ad (63), where the following 

constraint functions are assigned to bound constraints: 

                                                 
1 In this notation, letter l is used as “left” and r as “right”. 
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Penalty terms have the following contributions to the gradient of the objective function: 
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where ek is the co-ordinate vector k (component k equals 1, others equal 0). 

 

4.2.2 Implementation remarks on penalty terms and bound constraints   

This Section discusses some details relevant for implementation of penalty terms and bound 
constraints in the IOptLib (Investigative Optimization Library ). It is meant for developers and 
advanced users of the library because a good knowledge of the library is necessary to understand 
the section. 

 
We consider modification of the original analysis function according to (71). In principle, 

the implementation of the modified analysis is quite simple: we form a new analysis function that 
takes the parameters, calculates the sum of penalty terms according to parameters and bund 
constraints, modifies the parameters, runs the analysis function at the modified parameters, adds the 
calculated objective function to the sum of penalty terms to form the modified objective function, 
takes the calculated constraint functions and returns the results. All the operations could be 
performed in place, i.e. without allocation of additional space for auxiliary variables. 

 
The scheme is a bit more complicated if one would like to preserve information that is not 

returned by the modified analysis function, e.g. the modified parameters at which the original 
analysis function is performed, or the value of the objective function at the modified parameters. In 
the modified Nelder-Mead algorithm, for example, this information is sometimes desired for 
checking algorithm progress or for post-processing and analyzing the acquired results. In this case, 
additional storage is necessary to keep the additional information. 

 
There may be different possibilities with respect to what information should be kept, and 

modification of analysis defined by (71) can be combined by other modifications such as adaptive 
penalty functions. Different ways of handling the storage of additional data (together with the 
appropriate data types) should be implemented in order to optimize the speed and memory usage, 
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but this would increase the complexity of code and its maintenance costs. In  IOptLib a compromise 
solution is achieved by using some standard data types and related functionality. In particular, the 
type analysispoint  is utilized that is intended for storage of analysis results. Because of 
dynamically allocated storage for thing such optimization parameters and values of objective and 
constraint functions, the amount of additional memory necessary to support comfortable standard 
uses is not large. Manipulation of additional storage is relatively simple because standard 
functionality designed around analysispoint  the type can is used. This functionality can be 
easily extended in line with the standards when necessary. Beside some additional storage, the cost 
for using standard data types and procedures is also some additional data transcriptions (e.g. the 
values of constraint functions are transcribed from the nested (inner) analysispoint structure to the 
outer one). 

 
A scheme for performing the modified analysis function is shown in Figure 6. The structure 

of data that is passed to the modified function is also shown in the figure. 
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  Optimizatino algorithm 
 
Creates data storage a (type analysispoint) which 
contains d. 

  Call to optimization 

d (original 
definition data) 
pmin, pmax 

  Modified analysis function 
 
Calculates modified parameters p%  
Calculated modified penalty terms 
Runs original analysis at modified parameters 
Transcribes the constraint functions 
Calculates penalty terms 

Calculates modified objective function f%  

p, calc. flags, 
a  

calc. flags, 

( )f p% , ( )ic p%  

p% , calc. flags, 
d 

calc. flags, 
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  Analysis function 
 
Creates data storage a (type analysispoint) which 
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ic p  

f% ic

  a (analysispoint) 
 
  p (vector) 
  calc. flags (int *) 

  ( )f p%  

  ( )ic p%  

a%  (analysispoint) 

  Data structure: 
   

  a%  (analysispoint) a->data 
 
  p%  (vector) 
  calc. flags (int *) 
  ( )f p%  

  ( )ic p%  

data 
 

  additional data 
(boundconstraintdata) a% -
>data 
 
d (original definition data) 
pmin, pmax, pp … 
 

 
 

Figure 6: Scheme for handling bound constraints and penalty terms in algorithms. 

 
 
 
 

4.2.2.1 Example: How to prepare bound constraint data and analysis data in an 

algorithm   

 
This example shows how to prepare the bound constraint data and data for the analysis 

function in an optimization algorithm that handles bound constraints in a specific way. For most 



 
 

4. Modification and transformation of optimization problems   IOptLib User’s Manual 
 

 

 

 

61 
 
 

algorithms where handling of bound constraints would be suitable, the example code can be 
transferred by slight modifications. For example, different amounts of data can be passed to the 
algorithm through function arguments, in which way the behavior of the algorithm can be adjusted 
in more flexible way. 

 

Example 4: Preparation of modified analysis function that handles bound constraints, and its 
data. 

... 
/* Definitions of variables (some of these can in f act be passed as arguments 

of the function containing this code): */ 
vector lowbound,upbound; 
double bignum; 
int numparam,numobj,numconstr; 
boundconstrdata bc=NULL; 
real_bas_f penfunc=real_bas_f_zero_lin, constrfunc= real_bas_f_lin; 
double kpen=1.0, kconstr=1.0; 
void (*dispconstrdata) (void **), (*disppendata) (v oid **); 
 
analysis_bas_f anfunc, anfuncorig; 
void *ancd, *ancdorig; 
analysispoint anptbc=NULL; 
... 
... 
/* Praparation of bound constraint data: */ 
prepboundconstrdata(lowbound,upbound,bignum,numpara m,numobj,numconstr,&bc); 
bc->penfunc=penfunc; 
setboundconstrpenpar(bc,0,0,(void *) &kpen,disppend ata); 
if (penfunc!=NULL) 
  bc->transfparam=1; 
bc->constrfunc=constrfunc; 
setboundconstrconstrpar(bc,0,0,(void *) &kconstr,di spconstrdata); 
... 
... 
/* Preparation of modified analysis function that h andles the parameter 

bounds: */ 
if (lowbound!=NULL || upbound!=NULL) 
{ 
  prepandata_boundconstr(anfuncorig,ancdorig,NULL,b c,&anptbc); 
  anfunc=anfunc_mod_boundconstr; 
  ancd=anptbcpen; 
} else 
{ 
  anfunc=anfuncorig; 
  ancd=ancdorig; 
} 
... 
... 
/* Use of the analysis function anfunc and its defi nition data ancd for 

response evaluation within the algorithm… */ 
... 
... 
/* Cleaning part: */ 
boundconstrdata (&bc); 
dispanalysispoint (&anptbc); 
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In the first part of the above example, the basic variables used are declared. Some of these 

variables will usually be passed as arguments of the function that implements a particular 
optimization algorithm where bound constraints are handled by a modified analysis function, 
however this is not shown for simplicity. Declarations are only shown in order to present the data 
types used. 

In the second part, the bound constraint data is prepared. The data structure of type 
boundconstraintdata will contain data that defines the bounds (i.e. the vectors lowbound and 
upbound and the number bignum), as well as data that specifies how to handle bound constraints. It 
also contains space for auxiliary storage for the operations (such as storage of constraint functions 
generated out of bounds), which is used by operations that are automatically performed in the 
modified analysis functions. 

The third part contains a typical preparation of the modified analysis function that will 
handle bound constraints. Instructions for handling the bound constraints are on bc that has been 
prepared before, and the definition data for the modified analysis function is prepared according to 
the scheme in Figure 6 (right-hand side), using the existing bc. The definition data will be a pointer 
anptbc of type analysispoint, whose data field contains another pointer of type analysispoint, and 
the data field of this structure (i.e. anptbc->data->data; note the necessary data casts, because data 
is of type void *) will contain the pointer to bound constraint definition data bc. 

 
Preparation of bound constraint data: 
In this stage only the data that is related to bound constraints and their handling is prepared. 

The part where the modified analysis is defined can follow immediately, but these parts can also be 
separated. An example of preparation of bound constraint data can be found in IOptLib function 
NLPSimpboundbas()  of the module optsimp.c . 

In the line 
prepboundconstrdata(lowbound,upbound,bignum,numpara m,numobj,numconstr,&bc); 

the bound constraint data structure bc is allocated (if not already allocated) and initialized, and 
vector of lower and upper bounds (lowbound and upbound) are copied to the structure together with 
bignum, which specify the large absolute value above which bounds are considered unspecified. 
Also problem related data that are necessary for correct performance of procedures (number of 
parameters numparam, number of objective functions numobj and number of constraint functions 
numconstr of the original problem) are set. 

 
The following code segment specifies whether the modified analysis function will add 

penalty terms corresponding to bound constraints to the objective function: 
bc->penfunc=penfunc; 
setboundconstrpenpar(bc,0,0,(void *) &kpen,disppend ata); 
if (penfunc!=NULL) 
  bc->transfparam=1; 

In the first line we set the penalty generating function, which defines the form of the added 
penalty terms. Penalty generating function can be passed as argument to the optimization algorithm, 
but more often a particular form (such as real_bas_f_zero_lin() ) will be prescribed by the 
algorithm (and possibly only some coefficients will be passed through arguments). If this function 
is NULL then penalty terms will not be added.  
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The second line sets the definition data for the penalty generating function. In this case, the 
same data is set for all bound constraints (because the second and the third argument are 0). In 
general, data can be specified for each component separately, and also separately for lower and 
upper bounds (the second argument in this case specifies the corresponding component; if the third 
argument is non-zero then data is set for lower bound). In the above case, the penalty generating 
function used is real_bas_f_zero_lin  (assigned in definition of the variable penfunc), which 
requires a single non-negative coefficient in form of a pointer to a number of type double  as 
definition data. The address of the variable kpen is therefore passed as definition data for penalty 
generating function. 

At the end, we specify that transformation of parameters must also be performed by the 
modified analysis function, such that bound constraints will always be satisfied at parameters at 
which the original analysis function anfuncorig will be called. This is used e.g. in the nonlinear 
constraint simplex algorithm with bound constraint handling, but should not be in general used in 
gradient based algorithms1. 

 
Finally, instructions for conversion of bounds on parameter values to usual constraints are 

specified: 
bc->constrfunc=constrfunc; 
setboundconstrconstrpar(bc,0,0,(void *) &kconstr,di spconstrdata); 

This is similar to instructions for addition of penalty terms. If constraint generating function 
constrfunc is NULL then bounds will not be converted to normal constraints. Otherwise, a separate 
constraint will be added in the modified analysis function for each bound, represented by a suitable 
constraint function. Similar to penalty terms, constraint function is evaluated by application of bc-
>constrfunc  to the difference between parameter component and the corresponding bound 
(with sign defined such that the difference is positive when bound is violated). In the above 
example, linear function (f(x)=x) is used as constraint generating function. Its implementation 
real_bas_f_zero_lin  is assigned in definition of the variable constrfunc. In the second line, 
definition data for this function (which must again be a pointer to a single coefficient of type 
double ) is set on bc (again, the same data is used for all bounds). 

 
Preparation of modified analysis function: 
In the example, original analysis function with original definition data is used if bounds are 

not defined. This is done in the second part of the if branch: 
  anfunc=anfuncorig; 
  ancd=ancdorig; 

If bounds are specified, then the modified analysis function will be used, which performs the 
requested additional operations according to the bound constraints (defined by the lower bound 
vector lowbound, upper bound vector upbound and parameter bignum): 

  prepandata_boundconstr(anfuncorig,ancdorig,NULL,b c,&anptbc); 
  anfunc=anfunc_mod_boundconstr; 
  ancd=anptbcpen; 

                                                 
1 Because it gives raise to non-differentiable objective function of the modified problem (still continuous if the penalty 
generating function is continuous). Transformation of parameters in simplex algorithm ensures that the solution of 
modified problem exactly corresponds to the solution of the original problem with added bound constraints, even if the 
penalty function is not exact. 
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In the first line, data structure anptbc that is used as definition data for the modified analysis 
is prepared in the form required by the function anfunc_mod_boundconstr() . Function 
arguments are the original analysis function (representing the problem that is solved, except for 
bound constraints), its definition data, the function for de-allocation of definition data (which is 
NULL, since original definition data is prepared in the calling environment and should also be de-
allocated there if dynamically allocated), the bound constraint data structure bc. 

In the second and third line, the modified analysis function and its definition data are set. 
Analysis function is set to anfunc_mod_boundconstr() , which is pre-defined in IOptLib and 
automatically performs all operations for handling bound constraints, according to instructions on 
the bound constraint data structure bc. The structure anptbc of type analaysispoint , which has 
been prepared in the first line, will be used as definition data for this modified analysis function. Its 
structure is depicted in the right-hand side of Figure 6 (which schematically shows function of 
anfunc_mod_boundconstr() ). 

It is appropriate to mention at this point that it is advisable to launch an error or warning 
message if lower or upper bounds are defined, but neither the penalty generating nor the constraint 
generating function is specified (because in this case the bounds will be ignored if only handled 
implicitly by the modified analysis function; bounds can still be explicitly handled by the algorithm 
itself). 

 
Cleaning part: 
At the end, de-allocation of dynamically allocated data must be performed: 

boundconstrdata (&bc); 
dispanalysispoint (&anptbc); 

In the above example, the bound constraint data bc was allocated by 
prepboundconstrdata()  and the definition data for modified analysis anptbc has been 
allocated by prepandata_boundconstr() . Although bc is also put on anptbc, there is an 
agreement that bound constraint data is never de-allocated together with the definition data for the 
modified analysis function anfunc_mod_boundconstr() . 

Note that in the initialization part, bc and anptbc must be set to NULL. On the contrary, they 
would contain an undefined address while not allocated, which would result in very unpleasant 
errors in functions for their initialization. 

 
Let be emphasized again that anfunc_mod_boundconstr()  uses its definition data 

(that must be of type analysispoint ) not only for definition of its behavior, but also for storing 
analysis results. The modified response (together with optimization parameters at which the 
function is called) is stored directly in definition data anptbc before returned through output 
arguments. In addition, the results of the original analysis function are stored on anptbc->data, 
which must also be a pointer of type analysispoint , together with optimization parameters at 
which the original analysis function is called. These parameters may be transformed in order to 
satisfy bound constraints (transformation is performed if bc->transfparam is non-zero). Only 
anptbc->data->data alone actually acts as definition data for the modified analysis function. It is 
set to bc by prepandata_boundconstr() . Note that it is agreement that the bound constraint 
data (in this case bc) is never de-allocated together with the definition data for modified analysis (in 
this case anptbc, of type analysispoint ), therefore it must be de-allocated separately. 
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4.2.2.2 Basic tools for handling bound constraints 

 
 
 
 
 
 
 

4.2.2.3 Addition of penalty terms 

 
 
 

4.2.2.4 Conversion of bound constraints to ordinary constraints 

 
 
 

4.2.2.5 Modified analysis function 
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5 BUILDING BLOCKS FOR SUCCESSIVE APPROXIMATIONS 

 

 

5.1 Introduction 

Optimization algorithms employing successive approximation of response functions are one 
of the main targets of IOptLib. This chapter first describes basic instrumentation for building and 
using response approximations. The second part is devoted to description of implemented 
algorithms that make use of response approximation. 

 
We need to mention that many different approximation methods can be used in optimization 

algorithms. IOptLib is intended to provide ready to use tools for a number of important classes of 
approximations as well as to allow extension with new classes. Therefore, there will be a fair level 
of abstraction in the top-most level functions and data types. This introduction is intended to 
provide the description of the approximation systems starting from the top-most levels. 

 
There are several common or lower level utilities that are also used as part of the 

instrumentation for successive approximations, but are described in another sections because their 
more general and basic nature. In such cases, references to the appropriate sections are made. 

 
Overview of intended functionality: 
In order to give a feeling of a large diversity of tools that should be supported, let us give a 

brief overview of what we would like to support in the near future. Low order polynomial 
approximations such as linear or quadratic are considered basic approximation types. These 
approximations have local character. They are determined by set of constant coefficients of a fixed 
set of basis functions, which is used over the whole design space (i.e. coefficients are evaluated 
once for all). The effective range of these approximations is limited by the domain in which the 
approximated function can be adequately (i.e. with small enough error) approximated by the 
corresponding polynomial. Coefficients are most often calculated by the least squares method, 
which minimizes the weighted sum of squares of discrepancies between the approximation and 
original function over the sampling points. Beside a linear combination of a set of basis functions, 
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the coefficients can also occur in non-linear form, but still be calculated by the same least squares 
minimization procedure (non-linear least squares approximations). 

Different kinds of approximations are designed to overcome the local character of 
approximations with constant coefficients, e.g. kriging approximation or moving least squares 
approximation. The moving least squares approximation is derived from corresponding constant 
coefficient least squares approximation, where coefficients are not constants in the design space and 
must be calculated in each point by the usual least squares procedure. This is achieved by non-
constant weights, which are usually functions of the distance between the point of evaluation and 
the sampling point to which the weight corresponds. Moving least squares give rise to a whole set 
of possible definitions of weighting functions. 

Apart from using different types of approximations, we must be able to adapt the 
approximation procedures to different kinds of analysis response. Most fundamentally, analysis can 
be or can not be able to provide gradients of the response, and one must provide efficient means of 
constructing approximations according to the current situation regarding this. One can always 
calculate gradients numerically, but as concerns approximation, it is usually far more efficient (and 
numerically stable) to just sample non-derivative response in more points and use all the sampled 
information in building approximations than to first perform additional evaluations to calculate 
derivatives, and then used derivative information in building approximations. 

Another thing, which is more related to the nature of particular optimization problems, is 
that response functions can have very different properties e.g. with respect to effective range of low 
order approximations, which may be crucial for determination of sampling region and step 
restriction in restricted step methods. Sometimes we may assume that the objective function will be 
more problematic from this respect, and therefore automatic adjustment of algorithm parameters 
can be based on check performed only on the objective function and not on constraint functions. 
Sometimes this would not be true, which would reflect on how algorithms should be constructed. 
The underlying approximation utilities should be designed in such a way that all different situations 
can be handled. 

 
Remarks on terminology: 
A wide variety of terms related to this field are used in literature, not always in uniform 

manner. A widely used expression “multi-point approximations” is sometimes designated to stress 
that response approximations are generated on basic of evaluation (sampling) of the response in 
many points in the parameter space, in contrary with e.g. Taylor expansion, which is obtained by 
evaluating the response and its derivatives in a single point. The term “response surface methods” is 
sometimes used generally for optimization (or other analysis) methods that make use of 
approximations based on sampling response in a set of points. We find this term less appropriate 
because the response surface could adequately refer to the graph of the actual response function 
rather than its local approximation. Therefore we prefer the term “response approximation 
methods”. 

 

5.1.1 Overview of generic utilities from top to bottom 
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5.1.1.1 Hierarchical (top to bottom) arrangement that enables horizontal interactions 

 
On top of the diversity outlined above (but not separated from this), a number of purely 

implementation issues arise. For example, one question is whether approximation of analysis 
response should be fundamentally implemented on top of standard vector functions (Section 2.3.3) 
such as numerical differentiation (Section 2.5.1.2, 2.5) or on top of standard analysis functions 
(Section 2.3.1). 

 
It is decided that approximation utilities will be unified on a lower level, i.e. on the level of a 

single scalar response function. Generic utilities for building approximations of scalar functions of 
vector variable must therefore be provided and can be used very generally for different purposes. 
However, in the case where several scalar components of response are interconnected in some way 
(which is the case with different optimization response functions), it is inevitable that 
implementation must take into account these connections for the sake of efficiency. 

 
One of the common points is that optimization and constraint functions will typically be 

sampled in same points in the parameter space. When e.g. the same weights are used in the usual or 
moving least squares, approximation coefficients will be calculated by solving linear systems of 
equations where system matrices will be the same for all response functions. For the sake of 
efficiency, the system matrix should be evaluated (assembled) and stored only once, and for the 
solution of the corresponding systems of equations, the decomposition stage can be performed only 
once for all the response functions (which will in this case produce different right-hand sides). 
Another example when sharing of resources for approximation of different response functions is 
sensible is weighting functions (and possibly their definition data) used for calculating weight 
assigned to sampling points. Although approximations of individual scalar responses are treated 
separately, it must be possible that these approximations share common resources, which are 
managed by higher levels (e.g. generic approximation function for analysis or vector response). 
This is exactly the way how things are implemented, as will be made evident in the explanations of 
individual subjects. Separate treatment, on the other hand, enables development of approximation 
utilities independently of higher level algorithmic architecture. 

 

5.1.2 Basic scheme for use of approximations of analysis response 

 
 
 

5.1.3 Basic approximation data types   
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5.2 Implementation notes     

 
 

5.2.1 Specific and common auxiliary data structures 

Different input data, intermediate results and final approximation data are stored on 
auxiliary approximation data structures (type auxapproxdata ). Data stored on this structure 
have uniform structure, regardless of the type of (single or collective) approximated functions. Input 
data Whose structure depends on the type of the approximated functions (e.g. vector function, 
analysis response function, etc.) are on the basic approximation structure of type 
funcapproxdata . 

Since some of the input or intermediate data defining approximations can be common for all 
the collectively approximated functions, there is a common auxiliary data structure for carrying 
approximation data common to all functions, and there are specific structures for each individual 
approximated function. Most of the data can reside either on the specific or on the common data 
structure. Individual types of data (which sometimes refers to groups of data) are treated 
individually, which enables complete flexibility of defining which data is common for all 
collectively approximated functions and which is not. When for some function a given kind of data 
is defined both on common and individual data structure, the individual structure priority is taken 
into account and the individual data is used. Intermediate results are stored on the individual 
structure if at least any of the input data necessary to produce that output is provided on the 
individual structure, and it is stored on the common structure if all the input data come from the 
common structure. Such arrangement enables a lot of flexibility in saving memory when things can 
be treated commonly for all functions (e.g. weights or sampling points) and defining things 
individually when desirable. 

 

5.2.2 Approximation data updating functions 

5.2.2.1 Updating weights 

Function approxupdateweights  makes updates the weight information if not yet 
updated. It takes pointers to the common and specific auxiliary structures as arguments (therefore it 
does not need to determine itself which is the specific structure – this must be done in the calling 
environment). One of the common and auxiliary structures may be NULL (to allow, for example, 
approximating a single (scalar) function).  

Input data fields on the auxapproxdata  structure are weightfunc  with its definition 
data weightdata  (these define the weighting function, normally with possibility of analytical 
gradient calculation) and multweightst . The second structure defines eventual multiplicative 
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factors by which weights of individual samples are multiplied1, which enables defining a-priori 
importance of the samples (e.g. for filtering reasons). If weighting function is not defined then this 
structure itself defines actual weights2.  

Basic output weighting data fields are weightst  (weights corresponding to samples) and 
gradweightst  (gradients of these weights with respect to co-ordinates of point of evaluation). 
Corresponding update flags up_weight  and up_gradweight  define whether these data are 
updated or not (i.e. they need to be re-calculated from input data before they are used). 

Beside that, there are auxiliary structures vecweight  and matgradweight , in which 
weights and their gradients are assembled in vector (matrix) form required by some functions for 
calculating approximation. If these forms are required then transcription is done every time 
weighting data is needed. This is done by the weighting data update function even if the weighting 
data is updated, in order to ensure that information is up-to-date in every situation (see below). 

It is permissible that one kind of weight input data is defined on a common structure and 
another on the specific function. In this case, resulting data is defined on the specific function. Only 
if all input weighting data is defined on the common structure then the results will also be defined 
on the common structure.  

 
Function for updating weighting data is declared as 
 

int approxparamtomat(funcapproxdata fa, auxapproxda ta common, auxapproxdata 
spec, auxapproxdata *addractive) 

 
The first argument is the pointer to (collective) approximation data structure that can 

represent approximations of multiple functions. This argument is optional and is used 
predominantly for identification reasons in error reports. Pointers to the common and specific 
auxiliary approximation data structures follow, of which at least one must be non-NULL. The last 
parameter is address where the pointer to the active auxiliary data structure is stored (i.e. the 
structure where resulting weighting data is stored). This parameter is also optional and is usually 
used when the caller would like to know which is the auxiliary data structure where results are 
stored (i.e. whether this is specific or common structure).  

 
 

5.2.2.1.1 Directly setting the weights: 
There is also a possibility that weights corresponding to samples (and eventually their 

gradients with respect to evaluation point co-ordinates) are provided directly (externally set), i.e. the 
resulting fields weightst  and eventually gradweightst  are specified on the appropriate 
auxiliary approximation structure. In this case, the update flags (fields up_weight  and 
up_gradweight ) must be set, because otherwise updating utilities would try to overwrite the 
externally set resulting fields. Just because of the possibility of directly providing resulting 
weighting data, when weights are also required in vector form3 (and their gradients in matrix form), 

                                                 
1 If not specified, factor 1 is assumed for all samples; if partially specified, factor 0 is assumed for those samples for 
which factors are not specified. 
2 Which are considered constant, with gradients 0, i.e. they are not applicable e.g. for the moving least squares method. 
3 I.e. not only as pointers to type double on a stack. 
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the function for updating weighting data will do transcription to vector (matrix) form even if the 
update flags are set. 

 
 
 
 
 
 
 
 
 
 
 
 
 

5.3 Approximation utilities – To implement     

 

5.3.1 Things not yet implemented 

 
Linear least squares with general basis functions (i.e. we either specify functions and data 

for evaluation of basis functions, or we specify values of basis functions in the sampling points (i.e. 
they are evaluated externally). 

 
 

5.3.2 Efficiency issues 

For linear least squares approximations (linear & quadratic polynomials, also moving least 
squares), implement functions that do not solve for coefficients, but only assemble the system 
matrix and right-hand side vector!! Use of these functions should replace straight functions 
which assemble and solve the equations at the same time. 

This will improve the efficiency in the cases when several equations have the same system 
matrix but different right-hand sides, because decomposition can be made only once for all right 
hand sides leading to different coefficients. For example, usually there will be the same system 
matrix for all response functions (if more than one, i.e. if there are objective and constraint 
functions). 
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5.4 Lower level utilities for approximations 

 

5.4.1 Basis functions for WLS and MLS approximations 

Linear weighted least squares and the moving least squares approximations are based on a 
set of basis functions[5]. The first is simply a linear combination of basis functions with constant 
coefficients,  
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and the latter is a combination of basis functions with non-constant coefficients: 
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Approximation utilities of IOptLib utilize an uniform function form for calculation of a 

particular basis function in a particular parameter point x, and eventually its derivatives. The 
function prototype is as follows: 

 
int  basis_f_general ( int  which,vector param, int  *addrcalcval, double  

**addrval, 
               int  *addrcalcgrad,vector *addrgrad, void  *clientdata); 

 
Arguments of the function have the following meaning: 

• which  (input arg.) specifies which of the basis functions is to be evaluated 
• param  (input arg.) is the vector of independent variables at which this particular 

function is evaluated  
• addrcalcval  (input/output arg.) is a pointer to an integer that specifies whether 

the function value should be calculated and returned (non-zero) or not (zero or a 
NULL pointer). If non-zero and the function value could not be properly evaluated 
then the integer pointed to by this argument is set to -1. 

• addrval  (output arg.) is the address of a pointer to double (i.e. a variable of type 
scalar ) where function value is stored if calculated. If calculation of function 
value is requested then this address must be non-NULL, but the pointer at the 
address can be NULL (in this case the pointer is allocated). 
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• addrcalcgrad  (input/output arg.) is a pointer to an integer that specifies whether 
the gradient of the particular basis function should be calculated and returned (non-
zero) or not (zero or a NULL pointer). If it points to a non-zero and the function 
gradient could not be properly evaluated then the integer pointed to by this argument 
is set to -1 by the function. 

• addrgrad  (output arg.) is the address of a vector where function gradient is stored 
if calculated. If calculation of function gradient is requested then it must be non-
NULL. In this case, the vector at the address can be NULL or of inconsistent 
dimensions, in which case it will be allocated or re-allocated by the function. 

• clientdata  is a pointer to eventual additional data that precisely defines the 
basis functions. For example, for polynomial basis functions this would define 
products of which variables and in which powers constitute particular basis 
functions, which enables e.g. the same function to cover linear and quadratic basis 
with different orders of basis functions. This argument can be NULL for the 
functions that do not require additional definition data (e.g. a particular function for 
quadratic basis with agreed order of basis functions, where all basis functions are 
precisely known for space of arbitrary dimension – which is known form the 
parameter vector). Otherwise, the type of the data must be consistent with what the 
function expects. 

• Function returns 0 if everything is OK or a negative error code if an error occurs. 
 

5.4.1.1 Arbitrary polynomial basis functions 

The function basis_f_pol is provided for arbitrary polynomial functions. Its type is 
equivalent to the type described in the beginning of Section 5.4.1 and is declared as 

 
int  basis_f_pol ( int  which,vector param, int  *addrcalcval, double  **addrval, 
               int  *addrcalcgrad,vector *addrgrad, void  *clientdata); 

 
The definition data for this function must be a stack (type stack ) that contains an index 

table (type indtab ) for each basis function. The number of elements of the stack must therefore be 
equivalent to the number of basis functions. Basis functions are monomials, more specifically 
products of arbitrary numbers (possibly 0) of variables. Examples of basis functions with 
corresponding indices are: 

1 – {} (in this case the index table can be NULL, or it can be allocated but containing no 
indices) 

• x3⋅x4 – {3,4} 
• x5

2=x5⋅x5 – {5,5} 
• x2 – {2} 

 
User of the function must compose the definition data before calling the function, for which 

purpose pre-defined utilities for particular standard basis can be used. In particular, IOptLib 
provides utilities for linear and quadratic bases where basis functions are sorted in a particular order 
(Section 5.4.1.2). 
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5.4.1.2 Linear and quadratic basis functions in standard order 

IOptLib specifically provides some utilities for two particular bases – linear and quadratic – 
where basis functions are sorted in an agreed order. The library provides e.g. utilities for setting up 
the appropriate definition data for these sets of basis functions for the function basis_f_pol  
described in Section 5.4.1.1, and utilities for re-arrangements of coefficients into constant, linear 
and (eventually) quadratic term. For other operations such as the calculation of a single basis 
function and eventually its derivative, or calculation of a linear combination of basis functions 
(which is in the case of ordinary weighted least squares equivalent to calculation function 
approximation in a specific task), more general functions from Sections 5.4.1 and 5.4.1.1 are used. 

 
Standard linear basis in n

�  consists of the following basis functions (in the same order): 
 
 1 21, , , ..., nx x x . (78) 
 
Standard quadratic basis in n

�  consists of the following basis functions (in the same 
order): 
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This order is taken because lower order terms are sometimes given more importance 

(sometimes higher order terms are switched on only in the final stages of computation for better 
precision), and in the case of quadratic basis privileged treatment of pure quadratic terms is easier in 
this way. 

 
For composition of the definition data for basis functions of linear and quadratic bases, 

respectively, the following two functions are used: 
 

setup_linear_basis_data (int dim, stack *addrst); 
setup_quad_basis_data (int dim, stack *addrst); 

 
For both functions, argument dim  specifies the dimension of space, and argument addrst  

is the address of the stack on which basis function specifications are put as index tables (type 
indtab ). Functions automatically perfume all the necessary re-allocation. The definition data are 
de-alllocated by the function disp_pol_basis_data . The function dispstackallspec  
can also be used: 
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Example 5: Setup, use and de-allocation of definition data for standard linear and quadratic 
bases. 

 
stack deflin=NULL,defbas=NULL;  /* Do not forget to  initialize the stacks to 

NULL */ 
int dimension=5; 
 
... 
setup_linear_basis_data (dimension, &deflin); 
setup_quad_basis_data (int dim, &defquad); 
 
/* Use of the definition data ... */ 
... 
 
/* Deallocation of the definition data: */ 
disp_pol_basis_data(&deflin);  /* by use of specifi c functio nfor this 

purpose – safer way */ 
dispstackallspec(&defquad, (void (*) (void **)) dis pindtab);  /* By use of 

functins for de-allocation of stacks and index tabl es */ 
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5.4.1.3 Planning types and utilities    

 
Table 4 shows data used for evaluation of approximations of a set of functions gi(x), for 

ordinary weighted least squares and moving least squares. If something is considered a function 
then this is shown in the left-most column with independent variable in round brackets. 
Dependencies relevant for evaluation procedure are shown in round brackets in the rest two 
columns. Also, indices show relations (index i denotes different functions and index k different 
sampling points, and index l denotes different basis function). For example, if a given quantity has 
index i this means that it is calculated differently for each function gi(x), but it does not mean that 
gi(x) or gi occurs explicitly in evaluation formula. 

 
 
Considerations: 
One of the problems is that the basic data structures (approximation objects) must be 

appropriate for different kinds of approximations (e.g. weighted least squares & moving least 
squares). The problem can be solved in such a way that each approximation has its own set of 
utilities (e.g. “update the structure when sampling points are changed”) and corresponding data 
(some of the data may be shared, but only if there are the same rules for updating). Then, there are 
generic utilities, which perform the utilities for all types of approximations that will eventually use 
the same data structure. But another possibility is  

 
Some data are shared across different utilities and some data are shared across different 

functions to be approximated. 
 
- How to know which data are updated??? (how to keep information on whether data has 

been updated?) This can not be done through NULL/non-NULL. (By flags for each data, taking into 
account specially local and global aux. approx. data?) 

 
Would it be possible to treat e.g. weighting functions common and sampling specific, or 

vice versa? – Maybe yes, but only for all functions specific or for all functions common  - no use of 
making things different for individual functions. Maybe this can be allowed only for weighting 
functions??? – what about accounting for taking into account a different number of samples for 
different functions (e.g. objective/constraint)? 

 
 
 
Suggestions:  
For each kind of approximation (even with minimal differences), have completely separate 

data (or client data). 
Unify data structure carrying approximations of all different functions with common 

sampling, then distinguish (e.g. between vector and analysis functions) by functions that handle 
mapping of vector data (sampled) to individual data. Argument:  this will mean only one version of 
different kinds of updating functions for each kind of approximation (otherwise combinatorial). 
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Global structure will contain a stack of local auxiliary approximation data and auxiliary 
global approximation data. 

Auxiliary approximation data structures (local and global) should carry pointers to a global 
structure (is this necessary??) Unified data structure for a group of functions should  

All calculations AND updates will be performed through the unified structure for several 
approximations! For a single local approximation, there will simply be no global approximation!!! 

Provide the “Updated information” by flags! 
On the unified global structure, update function pointers should be only for updating input 

data (to reduce their number), e.g. updatesampling, updateweights, etc. Mapping of global data to 
local should be done by different functions (because this is bound to the type of the single- or multi-
valued function such as scalar, vector, or analysis), and these functions will in general use the 
updating function after mapping is done. Updating functions will in general only set updated flags 
to 0, and then calculation functions will do all necessary checking and re-evaluation for the data, 
because these functions are different for different kind of functions. 

Function pointers for evaluation of a single approximated function should also reside on 
the unified global structure. 

 
Common and specific data:  
Auxiliary data (the data that is only used in calculation but does not represent intermediate 

results) should be stored on the common data structure. 
For results and intermediate data (i.e. data that is calculated or derived from other data) and 

for input (independent) data, the decision on whether the data on the common structure or data on 
the structure corresponding to individual function is used, is made in the following way. If all the 
data from which given data is derived is common then the data is also common, otherwise the data 
is specific. For input data that is not dependent on other data, the rule is that if the data is allocated 
on the structure corresponding to a specific function then the data is considered specific, otherwise 
the data is considered common. 

Warning:  treatment of common data as specific will lead in worse efficiency, because 
operations that could be performed only once for all the functions will be repeated for each 
individual function. 

 
 
 
 
 
Remarks to suggestions: 
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  funcapproxdata     (  ) 
 
stack stpoints (analysis points) 
stack stparam (parameters if they are separates) 
stack stval (values) 
stack stgrad (gradients) 
 
 
stack stdata (elements of type auxapproxdata - data for approximations of all functions) 
auxapproxdata globauxapproxdata; 
 
 
 
 
 
 
 
 
 

  auxapproxdata:  
type: analysi_bas_f  
set by prepanfuncnumgrad through argument 
addrfunc  
Returns numerically differentiated response of the original 
analysis, converted from (numerically differentiated) vector 
response. 

 
 

Figure 7: Approximation data structure. 

 
 
 
 
 
 
 
 
 
 
 
 
 

5.4.1.3.1 Different types of data: 
Common data shared by all approximations (input data):  
x (point of evaluation) 
r k (sampling points) 
gik (function i) 
 
Intermediate data (auxiliary data) 
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Final data (results) 
yai(x) 
ai / a i(x) – Coefficients of approximation, different meaning for different kinds of 

approximations 
 
 
 
 
 
 
 

Table 4: Data for ordinary weighted least squares and moving least squares approximation 
with dependencies. Index i denotes different functions and index k different sampling points, 
and index l denotes different basis functions (only for linear approximation).  
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Data Least squares / fields Moving least squares 
x (point of evaluation) The same function coefficients. 

Approximation value changes. 
Re-evaluate function coefficients, 
weight change. Left-hand side the 
same for all functions if weighting 
functions are the same. 

 
r k (sampling points) Different coefficients. Left-hand side 

the same for all functions. 
Different coefficients. Left-hand side 
the same for all functions. 

 
yl(x) (basis functions)1 yl or yil   yl or yil  
  Basis bunctions may be different for different functions gi. For some tools, basis functions are nowhere explicitly 
stated because they are just assumed (e.g. linear, quadratic, etc.). 
ylk (basis functions) ylk(r k) or yilk(r k) (may be different for 

different functions, this is not 
common) 

ylk(r k) or  

 
wk(x) (weighting functions of 
sampling points) 

 /  wk(x) (r k) or wik(x) 

  Weighting functions may be different for functions gi, but this is not common. 
wk =(weights) wk(r k, A, s)  

or wik(r k, A, s) 
wk(r k,x A) 
or wik(r k,x A) 

  Weights may be different for different functions gi, but this is not common.  
gi(x) (function i)2

   
 
gik (function values in sampling 
points) 

gik (r k)  gik (r k) 

 
ai / a i(x) (approximation coefficients 
for gi(x)) 

ai(Ci,di)=ai(wk,yl, gik)=    

 
C / C(x) (system matrix for 
calculating coefficients ai) 

C(wk,ylk)=C(r k)  
or Ci (wik,yilk)=Ci (r k)  

C(wk(x),ylk)=C(x,r k)  
or Ci (wik(x),yilk)=Ci(x,r k) 

 
di / di(x) (right-hand side of system of 
equations for ai) 

di (wk, gik, ylk)=d i (r k) di (wk(x), gik, ylk)=d i (x,r k) 

 
LU C / LUCi (decomposition of C) LUC (C)=LU C(wik,yilk)=LU C(r k)  

or LUCi(wik,yilk)= LUCi(r k)  
 

 
yai(x) (approximation of function i - 
the final result) 

yai(x) (Ci,di)= yai(x) (Ci,di)= 

   
A, s (approximation region, defining 
the weighting functions) 

  

   

 
 
 

                                                 
1 Usually denoted by fl(x). 
2 Usually denoted by f(x) without an index, here we use different notations because there are several functions. 
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5.4.2 Weighting functions 

 
Weighting functions are usually scalar functions that have the maximal value in the center of 

approximation and fall with the distance to the center. In the most general form, we have 
 
 ( ) ( )( )sxAx −= fw  (80) 

 
We have  
 

 ( ) ( )( ) ( )
( )sxA

sxAA
sxAx

−
−−=∇

T

fw '  . (81) 

 
We have taken into account 
 

 
( )( ) ( )( ) ( )

( )( ) ( ) ( )sxAxxAsxA

x
x

xxxx

−=∇=−∇

=∇∇=∇

ff

ggfgf

T

,,'
 . (82) 

 
If A is a symmetric real matrix then we can write A=USUT, where D is a diagonal matrix 

whose elements are eigenvalues of A, and U is orthogonal matrix whose columns are corresponding 
normed eigenvectors. 
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Figure 8: A possible choice for a one-dimensional weighting function w(t)=w(||A(x-s)||). 

 
 
 
 
 
 

6 OPTIMIZATION ALGORITHMS  

 
 
 

7 TESTING SYSTEM   

The IOptLib has an extensive system for testing of algorithms and analysis functions1. Core 
of this system is implemented in the module opttest.c . In principle, the testing system can be 
thought as consisting of test examples and the test driver. The driver implements general utilities 
that are independent of specific response, such as addition of noise, counting and recording 
analyses, automatic numerical differentiation, calculation of optima by robust built-in methods, 
efficiency statistics, etc. 

 
 

7.1 Registering an optimization problem or test case 

In order to use the functionality of the test driver on a particular optimization problem, the 
problem must first be registered in the testing system. In the simplest way, the problem can be 
registered by calling the regoptprob  function with the following declaration: 

 
int regoptprob(char *name, analysis_bas_f anfunc, v oid *andata, void 

(*dispandata)(void **)); 

 
The registration function regoptprob  returns an unique identification number, which is 

assigned to the problem when it is registered. From this point on, the problem will usually be 

                                                 
1 For analysis functions, one may for example test the consistency of the provided gradients of the response. Some other 
functionality is also planned such as automatic testing of response smoothness. 
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referred to by this number1. Arguments of the function are a descriptive name2, original analysis 
function, its definition data and the function for de-allocation of this definition data (if this function 
is NULL then the definition data will not be de-allocated when the problem is unregistered). 

 
The testing system is not used exclusively for testing. Some other modules may use it for 

other purposes because of the easy use of its generally applicable functionality3.  
 
 
 

 
 
 
You can take a look at the function testopttest  at the end of opttest.c  in order to 

get some basic ideas about how the testing system is used. This function was implemented for 
testing functionality of the module as one goes along. It is expected that the testing system will be 
extended drastically in the future, therefore checking the source code of the module and especially 
the contents of the function testopttest  may be performed in order to get more accurate and 
updated information than can be found in the manuals. Hopefully, what is currently found about the 
testing system in the manuals should remain valid in the future, it is only incomplete. 

 
 
 

8 APPENDIX: FORMULAE FOR WLS AND MLS 

This chapter lists some basic formulas for the weighting least squares and the moving least 
squares approximations. A separate report on these methods is in preparation, and this aims at 
serving only as a quick reference for some portions of this manual, in particular the Section 5: 

Building Blocks for Successive Approximations .  
 

8.1 WLS approximation 

 
Calculation of coefficients: 
 

                                                 
1 There are also a number of predefined analysis function, which require an integer pointer as the definition data, and 
the pointer to the identification number must be passed in its place. These analysis functions locate the original analysis 
function and definition data through that pointer, and use them for calculation of the response (an example is 
analyseoptprob ). After registration, the original analysis function can always be replaced by analyseoptprob  
with pointer to the assigned problem ID as definition data. 
2 This is optional (it can be NULL) and is used by function that print information about the problem. 
3 This is partially due to the fact that problems can be simply referred to through an integer ID after they are installed. 
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 dCa = , (83) 
 

 ( ) ( )2

1

Nv

ij k i k j k
k

C w f f
=

=∑ x x  (84) 

 

 ( )2

1

Nv

i k i k k
k

d w f y
=

=∑ x  (85) 

 
Calculation of value and gradient of approximation: 
 

 ( ) ( )
1

;
Nb

j j
j

f a f
=

=∑x a x% , (86) 

 

 
( ) ( )

1

; Nb
j

j
ji i

ff
a

x x=

∂∂
=

∂ ∂∑
xx a%

, (87) 

 
 

8.1.1 WLS with value & gradient information: 

 

 ( ) ( )( ) ( ) ( )2 2

1 1 1

g

g g g

g

NNv N
ji

ij k i k j k k t k k
k k t t t

ff
C w f f w

x x= = =

∂ ∂
= +  ∂ ∂ 
∑ ∑∑x x x x  (88) 

 

 ( )( ) ( )2 2

1 1 1

gv

g g

g

NN N
i

i k i k k k t k k t
k k t t

f
d w f y w g

x= = =

 ∂
= +  ∂ 
∑ ∑∑x x  (89) 

 

klw  is weight assigned to component l of the function gradient in the point k. 
 

8.2 MLS approximation 

 

 
( ) ( ) ( )
( ) ( ) ( ) ( )1 2, , ...,

T

na a a

=

=   

C x a x d x

a x x x x
 , (90) 

 

 ( ) ( ) ( ) ( )2

1

Nb

i j k i k j k
k

C w f f
=

=∑x x x x  (91) 
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 ( ) ( ) ( )2

1

Nb

i k i k k
k

d w f y
=

=∑x x x . (92) 

 
Calculation of values: 
 

 ( ) ( ) ( )
1

Nb

i i
i

f a f
=

=∑x x x% . (93) 

 

8.2.1 Calculation of derivatives of the MLS approximation: 

 

 
( )( ) ( ) ( ) ( ) ( )

1

; Nb
j j

j j
jl l l

y f a
a f

x x x=

∂ ∂ ∂ 
= + ∂ ∂ ∂ 
∑

x a x x x
x x . (94) 

 
Coefficients ( )a x  in (94) are obtained by solution of the system (90) by taking into account 

(91) and (92). 
 

Calculation of 
lx

∂
∂

a : 

 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )l

l l lx x x

∂ ∂ ∂
= − =

∂ ∂ ∂
a x d x C x

C x a x q x  . (95) 

 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
1

2 2

2
Nv

i j k
k i k j k

kl l

j ki k
k j k k i k

l l

C w
w f f

x x

ff
w f w f

x x

=

∂ ∂
= +∂ ∂

∂ ∂
+ ∂ ∂ 

∑
x x

x x x

xx
x x x x

 (96) 

 

 
( ) ( ) ( ) ( ) ( ) ( )2

1

2
Nv

i k i k
k i k k k

kl l l

d w f
w f w y

x x x=

 ∂ ∂ ∂ 
= +   ∂ ∂ ∂  
∑

x x x
x x x  (97) 

 
Sequence of calculation: 

1. Assembly C, d according to (88) and (89). 
2. Decompose C, with eventual regularization if necessary (note that previous values of 

a may be necessary for this). 
3. Solve for a. 
4. Assembly dC/dxl, dd/dxl according to (96) and (97) All these (for each l) are 

assembled simultaneously, which reduse repeated calculation of gradients of w and f, 
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but requires a large additional storage. It is recommended tha the storage is on the 
parent structure (in this way it is shared by all functions). 

5. Calculate q(l) and solve for for da/dxl. It is again recommended that q is common for 
all functions. 

 
Remarks: 
The most problematic is simultaneous storage of all dC/dxl for each l. This could be avoided 

by calculation of ql for each l separately, using the same storage for dC/dxl and for  dd/dxl . 
However, this would then require many (n) repeated calculations of w, fi and their gradients. For 
now, we stick with simultaneous assembly of all derivatives of the system matrix and the right-hand 
side vector. 

 
 

8.2.2 Second order derivatives 

 

 

( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2

2 2

1

;

l m

Nb
j j j j j j

j j
j l m l m m l l m

y

x x

a a f a f f
f a

x x x x x x x x=

∂
=

∂ ∂

 ∂ ∂ ∂ ∂ ∂ ∂
+ + +  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

∑

x a x

x x x x x x
x x

. (98) 

 
In the above equation, coefficients ( )a x  are obtained by solution of the system (90) by 

taking into account (91) and (92). Derivatives of the coefficients, 
lx

∂
∂

a , are calculated by solution 

of the system of equations (95), taking into account (96) and (97).  
 

Calculation of 
2

l mx x

∂
∂ ∂

a : 

 
Derivation of (95) yields: 
 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2

l m l m l m l m m lx x x x x x x x x x

∂ ∂ ∂ ∂ ∂ ∂ ∂
= − − −

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
a x d x C x C x a x C x a x

C x a x  . (99) 

 
The second order derivatives of coefficients are again obtained by solution of a system 

equations with the same system matrix as in the equation calculation for coefficients, and with 
different right-hand side. The right-hand side is composed of terms from equations (91), (92), (96), 
(97), and the coefficients a and their derivatives, obtained by the solution of equations  (90) and 
(95). The remaining terms are second order derivatives of the system matrix C and the right-hand 
side for calculation of derivatives, vector d. 
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By differentiation of (96), we have 
 

 

( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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k
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C
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f f w f f
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w f w f
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w
w f

x

=

∂
=

∂ ∂

 ∂ ∂ ∂
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∂∂ ∂ ∂
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∂ ∂ ∂ ∂
∂∂ ∂ ∂ ∂

+ + +
∂ ∂ ∂ ∂ ∂ ∂

∂∂
∂

∑
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x x x
x x x x x

xx x x
x x x x
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x
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( ) ( ) ( ) ( ) ( ) ( ) ( )2
2 2j k j k j ki k

k k i k
l m l l m

f f ff
w w f

x x x x x

∂ ∂∂
+ + ∂ ∂ ∂ ∂ ∂ 

x x xx
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 (100) 

 
and by differentiation of (97), we have 

 

( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2
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2
2

2 2 2
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d
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=

∂
=
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+ + + ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂
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∑

x

x x x x x
x x x x

x x x
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(101) 

 

8.2.3 MLS with values and gradients 

 

 ( ) ( ) ( )( ) ( ) ( ) ( )2 2

1 1 1
g g g

g

NgNv N
ji

ij k i k j k k t k k
k k t t t

ff
C w f f w

x x= = =

∂ ∂
= +  ∂ ∂ 
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 ( ) ( )( ) ( ) ( )2 2

1 1 1

v

g g g

g

N Ng N
i

i k i k k k t k k t
k k t t

f
d w f y w g

x= = =

 ∂
= +  ∂ 
∑ ∑∑x x x x  (103) 

 
First order derivatives of the approximation: 
 

 
( )( ) ( ) ( ) ( ) ( )

1

; Nb
j j

j j
jl l l

f f a
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x x x=

∂ ∂ ∂ 
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 ( ) ( ) ( ) ( ) ( )
l l lx x x

∂ ∂ ∂
= −

∂ ∂ ∂
a x d x C x

C x a x  . (105) 
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 (107) 

 

8.3 Implementation remarks 

 

8.3.1 Use of linear (affine) transformations in approximation based 
optimization algorithms 

Affine transformations are typically used for sampling, definition of restricted step 
constraint, and for definition of weighting functions. Usually, linear transformations for different 
purposes will have the same transformation matrix for various purposes, eventually different by a 
scalar factor. Therefore, the same decomposition and eventually inverse matrix can be used for all 
tasks involved in approximation based algorithms.  

Beside the different scalar factor in transformation matrix, there may be differences in the 
shift vector in affine transformations (defining a center of a transformed region).  

 
A general affine transformation (Figure 2) is defined by: 
 
 ( )= = +x F x A x s% % , (108) 
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and its inverse transformation is (Figure 10) 
 
 ( ) ( )1 1− −= = −x F x A x s% . (109) 
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Figure 9: Affine function F that maps n unit ball into an ellipsoidal domain centered around 
s. 

 
 

s 

x r-s 

x 

y 

x~  

y~  

x~  F-1 

1 

1 

 

Figure 10: Performing inverse affine transform to change some ellipsoidal region in the 
space into a unit ball. 

 

8.3.1.1 Gradient of a function of transformed parameters 
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When we have some function ( )f x% %  defined on the domain of the affine transformation F 

and we derive from this function a function that acts on the codomain of transformation F, such that 
 
 ( ) ( )( ) ( ) ( )1 1 1;f f − − −= = = −x F x x F x A x s% %  , (110) 

 
then, according to (134), the gradient of f is1 
 

 ( ) ( ) ( )( )1 1 1T T
x x xf f f− − −∇ = ∇ = ∇ −x A x A A x s

% %

% %%  . (111) 

 
This situation is the most common one for using functions of affine transformed co-

ordinates. Usually, we define the transformation F such that we perform the operation of interest in 
the codomain of F, such that its domain represents a kind of reference domain (or region or space) 
and its codomain represents the physical domain. The reference domain usually serves for definition 
of templates for specific operations (such as sampling) or to define some template functions (such 
as weighting functions). 

This is particularly useful when the operations act on a restricted domain or when functions 
of interest have some characteristic domain of interest (such as domain when the function is non-
zero or has a significant value, as is the case with weighting functions). In such cases, we can define 
template operations and functions uniformly for some special domain of interest, and derive actual 
operations or functions that we need in the physical space by affine transformation of co-ordinates.  

Affine transformations can be used for such purpose when it is easy to define operations or 
functions on a unit ball, and when the limited region of interest is bounded by a hyper-ellipsoid with 
an arbitrary center. Indeed this if the most general case that we need in approximation-based 
optimization for sampling, definition of weighting functions, and definition of the restricted step 
constraint. 

 
If we have, in the contrary, a function ( )f x% %  defined on the domain of transformation F and 

we derive from this function the equivalent function on the domain of F, such that 
 
 ( ) ( )( ) ( );f f= = = +x F x x F x A x s% % % % %  , (112) 

 
then gradient of f%  is 
 

 ( ) ( ) ( )T T
x x xf f f∇ = ∇ = ∇ +x A x A Ax s
%

% %  . (113) 

 
 

8.3.1.2 Implementation of affine transformations in IOptLib  

 

                                                 
1 Note that domain and codomain of F can have different dimensions, but usually the dimensions will be the same. In 
the case of different dimensions, the transformation is not invertible, which significantly limits its use. 
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Implementation of the affine transformations in the IOptLib accounts for efficient treatment 
of special cases where the transformation matrix is simple scaling or a diagonal matrix. It also 
allows for multiplication of some matrix by a diagonal matrix or a scalar factor. The matrix A can 
be written as 

 
 ( )1 ;c c diag= =A DA D d%  (114) 

 
Multiplication with diagonal matrix: 
In general, multiplication with a diagonal matrix is not commutative: 

[AD] ij=aijdjj, [DA]ij=aijdii 
Efen if A is symmetric, its product with a diagonal matrix D is not commutative. In this case 

(DA)T=AD. 
 
 

8.3.1.3 Sampling 

 
The simplest sampling is uniformly distributed random sampling. On an arbitrary ellipsoidal 

domain, we usually perform sampling that is uniformly distributed on its inverse image – the unit 
ball. Sampling points are therefore specified on a unit ball and then transformed to the actual 
sampling region by affine transform: 

 
 ( )i i=x F x% . (115) 

 
Sometimes we try to improve sampling by solving a specific minimal particle potential 

problem (in order to maximize distances between sampling points). Usually a number of existent 
(static) points lx  are considered in such a problem beside the new points we want to position in an 
optimal way. In this case, we first inverse transform lx , solve the minimal potential problem for 
new sampling points on an unit ball, and transform the calculated sampling points to the actual 
sampling region: 

 

 

( )
{ }

{ }
{ } { }( )( )

( )

1

arg min ,
k

l l

k l k

k k

l

k

−= ∀

=

= ∀
x

x F x

x P x x

x F x

%

%

%% %  (116) 

 

8.3.1.4 Weighting functions & calculation of weights 

 
Typically, weighting functions in a multidimensional space are derived from one 

dimensional functions of an argument that is a norm of the inverse transformed vector. In such a 
way, we obtain functions whose iso-surfaces are ellipsoids.  
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 ( ) ( )( ) ( )( )1 1

2 2
w f f− −= = −x F x A x s  (117) 

 

 

( ) ( )( ) ( )( )
( )( ) ( )

( )

1 1

2 2

1 1
1

1

'

'
T

w f

f

− −

− −
−

−

∇ == ∇ =

−
−

−

x F x F x

A A x s
A x s

A x s

 . (118) 

 
 

 ( ) ( )( )1w f −= −x A x s  (119) 

 
We have  
 

 ( ) ( )( ) ( )
( ) ( )

1 1 1
1

1
2

' '
T T

w f f
− − −

−
−

−
∇ = − =

−
A A x s A x

x A x s x
xA x s

%
%

%
 . (120) 

 
We have taken into account 
 

 
( )( ) ( )( ) ( )

( )( ) ( ) ( )

2
2

' , ,

T

f g f g g

f f = −

∇ = ∇ ∇ =

∇ − = ∇ x A x s

x
x x x x

x

A x s A x

 . (121) 

 
If A is a symmetric real matrix then we can write A=USUT, where D is a diagonal matrix 

whose elements are eigenvalues of A, and U is orthogonal matrix whose columns are corresponding 
normalized eigenvectors. 

 
 
Another way to derive expression (120) is to consider the weighting function in the 

reference co-ordinate system, i.e. 
 

 ( ) ( )0 2
w f=x x% %  (122) 

 
and derive the actual weighting function by transformation of co-ordinates, i.e. 
 

 ( ) ( ) ( )( )1 1
0 0w w w− −= = −x F x A x s  (123) 

 
Then we have, according to (134): 
 
 ( ) ( )( )1 1

0
T

x xw w− −∇ = ∇ −x A A x s
%

 (124) 
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According to (140), 
 

 ( ) ( )
2

0

2

x

t

d f t
w

d t
=

∇ =
x

x
x

x%

%

%
%

%
 (125) 

 
and then 
 

 ( )
( )

( )( )
( )1

2 2

1 1

1

1
2 2

T

T
x

t t

d f d f
w

d t d t −

− −
−

−
= = −

−
∇ = =

−x A x s

A A x sx
x A

x A x s
%

%

%
. (126) 

 
 
 

8.3.1.5 Restricted step constraint 

 
Restricted step constraint is defined as 
 

 ( ) ( )2 21 1

2 2
1− −= − ≤F x A x s  , (127) 

 
therefore the corresponding constraint function is 
 

 ( ) ( ) ( )2 21 1

2 2
1 1rc − −= − = − −x F x A x s  . (128) 

 
Gradient of the constraint function is therefore 
 
 ( ) ( )1 12 T

rc − −∇ = −x A A x s  (129) 

 

 2

2
2 T∇ =Ax A Ax  . (130) 

 
 

8.4 Formulas for function gradients 

 
Jacobian matrix of a vector function : m n→F � � , : 
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( )

( )( )

( )
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( )( ) ( )

1 2
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 . (131) 

 
Gradient of composition of scalar functions: 
 
 ( )( ) ( )( ) ( )f g f g g′∇ = ∇x x x  . (132) 

 
Gradient of composition of scalar and vector function: 
 

 ( )( ) ( )( ) ( ) ( )
T

f D f
=

∇ = ∇
t g x

g x g x t  , (133) 

 
where 
 

 ( )( ) ( )( )D J=g x g x  

 
is the Jacobian matrix of g. 

 
Gradient of a linearly transformed function: 
 
 ( ) ( )T

x f f
=

∇ = ∇
t A x

Ax A t  (134) 

 
Gradient of norm of a vector is 
 

 
2

2

, 0∇ = ≠x
x x

x
 (135) 

 
and from this it follows 

 

 
2

2

, 0T∇ = ≠Ax
Ax A x

Ax
 (136) 

 
and then, taking into account (132), 

 

 ( ) ( )2 2
2

, 0Tf f ′∇ = ≠Ax
A x Ax A x

Ax
 (137) 

 
Gradient of a square norm is 
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 2

2
2∇ =x x  (138) 

 
and therefore 
 

 2

2
2 T∇ =Ax A Ax  . (139) 

 
From (135) and (132) we also have 
 

 ( ) ( ) ( )
2 2

2 2
2t t

d f t d f t
f

d t d t
= =

∇ = ∇ =
x x

x
x x

x
 (140) 

 

9 APPENDIX: COMMON TYPES AND RELATED MODULES  

 

9.1 Introduction 

9.1.1 Comments on ANSI C 

ANSI C is a highly portable, plain, basic and logical high level programming language. It 
does not provide or enforce many artificial constructs above the machine level (there is no explicit 
object oriented programming or OOP support, while one can still keep programming style that is 
close to these concepts), but still provides what is necessary for high level programming. This 
includes control flow constructs necessary for structured programming, dynamic memory allocation 
and definition compound data types for combining heterogeneous data in arbitrary arranged 
packages and easy addressing, passing and access of individual parts or data conglomerates as 
whole. Through function pointers that can be kept in static variables and function arguments, data 
and functions may be treated in more unified way (such as it is common in OOP). 

Since C does not enforce any particular programming style and it provides relatively low 
level but still highly human-readable access to hardware capabilities, the code can be made either 
very efficient or with interfaces exhibiting high levels of abstraction or encapsulation. Since C is 
very commonly used (free and commercial compilers are available on almost all platforms), there 
are also well established procedures for connecting C code with software coded in other 
programming languages (although this may be very platform dependent). With other words, 
programming a library in C lets a lot of freedom and generality, and this is the main reason for 
choice of this language. If it turns very beneficial to have a library with the same functionality as 
“IOptLib” in another programming language, this should be most entirely solved by building an 
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interface library in that language. This would enable uninterrupted development of the library and 
continuation of its integrity. 

 
One of the most typical and for many people most acute feature of programming in C is that 

one must explicitly handle dynamic memory allocation as one goes along. Unless in very simple 
cases, this also means that memory must be explicitly released when not used any more (there is no 
implicit allocation and built-in garbage collection). This requires some additional programming 
discipline. Lack of discipline can lead to serious troubles such as memory leaks (software 
accumulates allocated memory without de-allocating (releasing) it when not needed any more, and 
can finally spend all available resources, which leads to crash of the program or the whole system), 
or memory access errors. The latter typically occur when data storage that is attempted to be used 
has not been allocated before or not enough space has been allocated for the data, or when we try to 
access (read or write) memory that has already been de-allocated (released). Another common 
memory handling error is that one sets by mistake two pointers to point to the same memory 
location, but they should logically represent different data. Storing one piece of data therefore 
unexpectedly changes another. 

9.1.1.1 About pointers in C  

How to deal with pointers in C is the matter of knowing the programming language. It is not 
intention of this document to teach programming or explain syntax rules of some particular 
language. However, understanding pointers is so important for using the library, and many people 
using other programming languages are so unfamiliar with these concepts that it may be appropriate 
to include a brief recapitulation of the subject. 

There is nothing mysterious about pointers – they are just pieces of data of particular kind 
that carry some information, exactly the same as numbers. They can be stored in variables just as 
other pieces of data. Difference is that the information they carry is somehow more abstract and 
related to the machine architecture rather than to the model and procedures we want to build with 
our code. Pointers contain memory addresses, which can be used to access other kinds of data that 
resides in memory during program execution. Basically, all data that are manipulated by the 
executed program are contained in memory at some time, only that referencing the corresponding 
memory locations is usually performed indirectly, not through addressing memory but through 
names of variables. On the machine level, data access still reduces to addressing memory locations 
and transferring pieces of memory contents, since variables are just an artificial construct to aid 
programming. 

One of the main reasons why to deal with pointers is to enable dynamic allocation of 
memory. With this concept, we don’t need to know in advance how many data will be treated and 
how much memory will be needed to perform a given set of operations. At any point in the code, 
we can ask the operating system to allocate an additional piece of memory of a specified size for 
our use, use this peace of memory through its address, and later (when the memory is not needed 
any more) tell the system to de-allocate (release) this piece of memory, so that it can be used for 
other purposes1. For example, we need to statistically analyze data read from disk, but don’t know 
in advance how many data there will be. Normally, we never operate with particular memory 
addresses (because this task is taken over by the operating system), but we are still aware that the 

                                                 
1 Some languages enable this implicitly, without the need to operate with something thought of as memory addresses. 
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value (content) of the pointer represents the address (i.e. position in the memory) where a given 
piece of data is located. 

Computer memory can be imagined as a contiguous and homogeneous block of equal 
storing units1, therefore different addresses (locations) are equivalent. However, similarly as 
programming language distinguish between data units of different types2 in order to assign them 
human understandable meaning, different types of pointers may be declared according to the type of 
data they are intended to point to. Let us consider the following code: 

Example 6: 
int a=1, b=2, c; 
int *ptr1=NULL, *ptr2=NULL; 
ptr1=&a; 
prt2=&b; 
*ptr1=44; 
c=*ptr2; 
printf(“Value of a: %i.\n”,a); 
printf(“Value of c: %i.\n”,c); 

 
Execution of the above code generates the following output: 
 

Value of a: 44. 
Value of c: 2. 

 
Integer variables a, b and c  are defined in the first line, and a and b are initialized to 1 and 

2, respectively. 
In the second line, two pointers to integer data are defined, namely ptr1 and ptr2. This is 

done by use of the * (de-reference) operator, which means “take the value the variable points to”. 
The declaration int *ptr1  should be read as »define a variable ptr1  such taht *ptr1  (i.e. the 
value that ptr1 points to) is of type int  (which denotes a signed integer in C)«. Both pointers are 
initialized to NULL, which is a pre-defined value for an undefined address in C. If the value of some 
pointer is NULL, then one knows that it does not point to a valid location in the memeory, and may 
not refer to what that pointer points to. 

In the sequel, addresses of variables a and b are assigned to pointer variables ptr1  and 
ptr2 , respectively. The address operator & is used to obtain the storage address, and the statement 
ptr1=&a;  means “get the address of variable a and store it in the variable ptr1 ”. After 
assignment, poiter variables hold the addresses of the portions of memory where the variables a and 
b are stored. The actual addresses depends on the compiler, linker, operating system and are not 
important for the programmer. It only matters what data is addressed by the pointers. 

The statement *ptr1=44;  stores the number 44 at the location pointed to by ptr1 . Since 
the type of ptr1 is »pointer to int«, the value is treated as signed integer (which affects the bit 
representation and length of data piece that is written to the memory). And since the variable a is 
kept at the location pointed to by ptr1  (because of the assignement ptr1=&a; ), this assignment 
also sets the value of a to 44. The dereference operator * is used to refer to what a pointer points to. 
                                                 
1 Byte is usually taken as the basic unit on the level of programming language. 
2 While on the machine level, all information is uniformly represented in as a binary sequences of different lengths. On 
this level, meaning is assigned to the data only through operations used to manipulate the information (e.g. by integer 
addition of two integer numbers). 
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Let us mention again that the declared type of the pointer defines how the dereferenced storage is 
treated. In this case it is treated as data of type int , which affects the length of the data and the bit 
representation of the value. 

The statement c=*ptr2  takes the value pointed to by ptr2  and assigns it to the variable 
c . Since ptr2 points to the location where variable b is stored, and the value of this variable is 2, 2 
ia assigned to c . 

Since the point where the address of a variable is assigned to a pointer, referencing variable 
or referencing what pointer points to is the same thing. Therefore, whatever is assigned to a variable 
will affect the value referenced through the pointer and vice versa. 

 
The above example with corresponding comments does not show the true reasons why 

pointers are useful. There are two basic reasons for that. The first one is dynamic allocation, and the 
second one is the possibility of passing (e.g. through function arguments) arbitrarily large 
conglomerates of heterogeneous data by passing a single pointer. Let us explain dynamic memory 
allocation first. 

 
Dynamic allocation of arrays: 
Consider the following code: 
 

Example 7: 

void printsumseries (int n) 
{ 
  int i, j, *tab=NULL; 
  if (n<1) 
    return;  /* function does nothing if n<1 */ 
  tab=malloc(n*sizeof(tab));   /* allocation of tab le */ 
  tab[0]=1;  /* initialization of the first element  */ 
  for (i=1; i<n; ++i) 
  { 
    tab[i]=0;  /* initialization of element i+1 */ 
    for (j=0; j<i; ++j) 
      tab[i]=tab[i]+(i+1)*(j+1)*tab[j];  /* add ter m j+1 of the sum */ 
  } 
  printf(“The first %i elements of the series:\n”);  
  for (i=0; i<n; ++i) 
    printf(“%i: %i \n”, i+1, tab[i]); 
  free(tab); 
  tab=NULL; 
} 
 
... 
printsumseries(4); 

 
In the above code, a function is defined for calculation and printing of the first n elements of 

the series defined by 
 

 ∑
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The number of terms to be printed is passed as an argument of the function. We can see that 
for calculation of any term of the series, we need to have all previous terms, therefore we need a 
table of numbers for storing these terms. Since we don’t know in advance how many terms we will 
need to calculate and print, we also don’t know the length of the auxiliary table necessary to store 
the evaluated terms of the series. We will solve this by dynamically allocating the space for the 
table each time the function is called. 

We define the auxiliary table tab  as a pointer to int . Then we allocate the space for n 
integers (exactly as many as we need) and set tab to the address of the beginning of dynamically 
allocated space. This is done by the statement tab=malloc(n*sizeof(*tab)); . The 
standard function malloc  instructs the operating system to allocate a contiguous memory block of 
a specific length (specified as an argument that defines the length in number of bytes) for the 
program use. The function returns the address of the allocated memory (which we assign to the 
pointer tab ). In order to allocate just enough space necessary for storing n integers, the operator 
sizeof  is used that returns the size occupied by a data unit of a given data type (which is system 
dependent). In order to determine the size of a single data unit,  the sizeof  operator takes as 
argument either the name of the type or reference to a variable of a given type for which the 
occupied storage size is requested. We used the latter, i.e. we pass *tab  as argument, therefore the 
operator returns the size of a data unit pointed to by the pointer tab (which is the size of type int ). 
The advantage of referring a variable instead of a type is that if we later decide to change the type of 
tab  e.g. to long *  (integer type long  requires more storage space than int  on some systems) 
then the size will still be correctly calculated without changing the code (if we stated the type, we 
should change the argument to sizeof  according to new declaration). 

After allocation of a memory block for the table (array) of n integers, calculation of the 
series terms is performed. Each calculated term is stored in the allocated array. Individual numbers 
(element of the array) are referenced through the pointer that points (holds the address of) to the 
beginning of the array, since pointers can automatically represent arrays in C. Reference to elements 
consists of the pointer name followed by index in square brackets. Elements of arrays are counted 
from 0 rather than from 1, therefore tab[1]  refers to the second integer element of the array.  

 
Figure 11 schematically shows the situation in memory after allocation of the table and 

calculation of the first four terms of the series. Memory is viewed as a contiguous block of bytes, 
which are denoted as small squares. It is assumed that type int  is four bytes long, therefore the 
allocated block of memory (shaded in yellow) is 16 bytes long. We can imagine this block divided 
to smaller blocks of 4 bytes, each of which will store one integer number. The address of the 
beginning of the allocated block is assigned to the pointer variable tab , which is stored in memory 
at some other location (unrelated to the location of the allocated memory block). We thus say that 
tab  points to the allocated memory block. Since tab  has been declared as pointer to int , we can 
use it to address successive integer elements of the array. In the figure, reference to the individual 
integer members of the array (the allocated block) are denoted, together with the calculated values 
(terms of the series) that are stored in these elements. 

After calculation, elements of the series that had been stored in the array are printed out. 
After this, the array is not needed any more and is released (de-allocated) by the standard function 
free . This function instructs the system that a given memory block, which had been dynamically 
allocated before, is not needed any more. The system releases the allocated memory, which can then 
be re-used for other purposes (e.g. it may be a constituent part of another dynamically allocated 
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block of memory reserved at another point of program execution). A valid pointer to the allocated 
memory block must be passed to free . This function may not be called with a pointer argument 
that is not the address of dynamically allocated memory, and it may not be called again with the 
address of the same memory block that has already been released. 

As a good programming practice, we set the pointer tab  to NULL after de-allocation of the 
memory block it points to1. This habit is good for preventing attempts to access the memory that 
had been released or attempt to release this memory again (which would result to disastrous 
errors)2. A pre-defined value NULL is used to indicate that pointer does not point to a valid 
location. When we use a pointer in a portion of code that is much isolated from the parts where this 
pointer is otherwise manipulated (e.g. in some function to which the pointer is passed as argument), 
we can check the validity of the pointer by checking whether it is NULL. This strategy will only 
work well if we will strictly set all pointers that are not assigned valid addresses to NULL, which 
includes points at which the allocated memory pointed by pointers is released. 

After execution of the last line of code, where the function is called with argument 4 
(number of terms to be printed), the following output is generated: 

 
The first 4 elements of the series: 
1: 1 
2: 3 
3: 19 
4: 156 

 
 

tab 

tab[0] 
=s1=1 

tab[1] 
=s2=3 

tab[2] 
=s3=19 

tab[3] 
=s4=156 

 
 

Figure 11: Memory scheme after allocation of space for an array of 4 integer numbers and 
calculation of the first four elements of the series (Example 7). 

 
Notes on pointer arithmetic and addressing arrays: 

                                                 
1 Although in this place such caution is not really necessary, since the memory is de-allocated just before the end of the 
scope of the variable that points to it and it is pretty sure that we will not do anything with this pointer after de-
allocation. At least theoretically, we could extend the function definition by addition of some instructions at the end of 
the function. In this case, setting the pointer to NULL could turn useful, since we could check the pointer and prevent 
access to the memory that has been de-allocated. 
2 After calling free, the pointer that is passed as argument does not change and therefore still points to the same location. 
However, the memory at that location is released and it is no longer valid for the program to access that memory. 
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As mentioned, pointers with specified type can automatically be interpreted as reference 
points of arrays of elements of a given type. It is considered that such pointers point to blocks of 
memory containing a number of contiguously arranged elements of a given type. For example, 
tab[i]  in the above place refers to the element i+1 of the array of integers, thought to begin at the 
place pointed to by tab . Addition of 1 follows from the fact that elements of arrays are counted 
from 0. 

The first element of the array pointed to by tab  can be equally well referred to by using the 
de-reference operator *, i.e. as *tab , or by using the indexing operator [] , i.e. as tab[0] . On 
basis of this, pointer arithmetic or addition and subtraction of integers is defined for pointers in 
such a way that addition of 1 is identical to increment of the pointed address by the size of the 
pointed data type. Therefore, the following two references both refer to identical piece of data 
stored in memory1: 

 
tab[i] 
*(tab+i) 

 
When referencing arrays through pointers, we must take care that we don’t reference the 

elements whose indices exceed actual array bounds. E.g., if address of a variable a of type int  is 
assigned to the pointer tab , we may not refer to the second element of the array pointed to by tab, 
i.e. tab[i] , since only a single integer is stored at a location where the pointer points. Similarly, 
we may not refer to tab[n]  in the function defined in Example 7, because the size of the allocated 
memory whose starting address was assign to tab is only sufficient for n elements. The compiler 
does not control whether we refer to elements out of the array bounds because there is now way to 
establish that. We can, however, declare pointer variables that are intended to point to arrays of 
fixed length, which is done as follows: 

 
int itab[3]; 

 
By the above code, a pointer to an array of three integers itab  is defined. The space for 

array is allocated right at the definition point because the size is fixed and known in advance. In this 
case, we can not refer to an element that exceeds the bounds (this would generate a compiler error, 
e.g. itab[3]  or itab[10] ) or assign some other address to the array (e.g., statements 
itab=&I;  or itab=tab;  are illegal). We can only assign new values to elements of such table 
or get their values, e.g. 

 
itab[1]=tab[1]; 
tab[2]=itab[1]; 

 
Pointers to compound data units: 
In C, we can combine arbitrary data units of different types into conglomerates called 

structures. The point is in creating objects that can represent complex things and referring to these 
objects as single units, which highly simplifies manipulation and putting things together. 

Pointers play two roles in this concept. One is the ability of dynamic extension of data 
conglomerates (e.g. dynamically allocated arrays with variable size, and some pieces of data may at 

                                                 
1 This also explains why array elements are counted from 0. 



 
 

9. Appendix: Common types and related modules   IOptLib User’s Manual 
 

 

 

 

102 
 
 

different stages either be allocated and carry useful information or not). The other role is passing 
information to different execution levels (e.g. to functions, which do a specific job and either use 
complex data or generate complex results) by passing (i.e. actually copying) between these levels 
only small data pieces (pointers to the structured data) rather than complete data. A simple 
demonstration of both roles is given by the definition of vector  and matrix  types (Section 9.2).  

The void * type: 
ANSI C defines the void data type (meaning unspecified, none or any), which can only be 

used as an imaginary type of return values of functions that don’t return anything1 or to declare 
pointers for which the type of the data they point to is not defined. Such pointers can be used to 
point to any type of data, and are useful e.g. for defining container objects for carrying different 
types of data (such as stacks, see section 9.3). 

 

9.1.2 Followed programming rules 

We will not explain any details about memory handling in C. We consider this a pre-
requisite to use of the library, and users can consult any book on C for this purpose. However, we 
would like to mention some rules of good practice that help keeping programming discipline and 
the rules that mainly apply for this library. 

 
Sometimes quite complex data organization is necessary in order to keep things general as 

well as efficient and easy to use. For the task of memory organization, appropriate compound types 
are defined. Usually these will be structured types, with pointers to them declared as separate types. 
Pointers will mainly be used rather than structures themselves. Data structures may be highly 
complex and nested several levels (one data type may contain pointers to other data types, which 
again contain pointers to other data types, etc. In order to manage complexity, for each structure 
type there will be basic operations defined, which in particular includes storage allocation and de-
allocation. 

Allocation and de-allocation should always be made by the provided functions. This means 
that exact definition of a data type may change (i.e. a compound data type may be extended), but 
this will not affect correct memory handling because the narrow set of basic operations will be 
updated almost simultaneously. 

 
It is a common rule that every dynamically allocated piece of data must have a unique basic 

handle, i.e. a pointer to the data through which it is allocated or de-allocated. Other auxiliary 
pointers may point to the same data, but this will be merely used in oder to assist access to 
individual parts of the data in the case of nested pointers and when type casting is necessary. 

As a good programming practice, all pointers that are intended for basic handles of 
dynamically allocated data should be initialized to NULL. Whenever such pointer is nod NULL, it 
is considered that it points to allocated data and can therefore be de-allocated when the data is not 
needed any more. It is a good practice that the basic handle is set to NULL immediately after de-
allocation. This rule can only be skipped when de-allocation is made right before the end of a scope 

                                                 
1 In some language such functions are referred to as procedures (which do something but do not return a value), in 
contrast with functions, which do something and return some value. 
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of the pointer variable, which will therefore not be accessible shortly after de-allocation of the 
pointed data. 

Functions for allocation and de-allocation of complex nested types must be implemented 
hierarchically in such a way that the above rule is followed strictly. De-allocation functions should 
take address of the data pointer rather than the pointer itself as an argument. After de-allocation 
(usually by using the standard free()  function, the pointer will also be set to NULL. If the data to 
be de-allocated contains pointers to other dynamically allocated data structures, these will be de-
allocated first. 

 
Some data types defined in this library (such as stack , see Subsection 9.3) act as 

containers that can hold pointers to different types of data. Objects of such types may be used in 
both ways – to hold auxiliary pointers (e.g. to aid operations such as sorting) or to hold many basic 
handles of data of the same type. Therefore, two ways of de-allocation are supported for such data 
objects. One way is de-allocation of merely the container itself, without de-allocating its elements 
(because their basic handles are somewhere else). Another way is de-allocation of the contained 
elements followed by de-allocation of the container object. Since elements of such container objects 
are represented as pointers of indefinite type (void *), for the second method we need to provide a 
function that de-allocates individual elements. 

9.1.3 Work in multi-thread environment 

A process1 can have several parallel execution threads. These threads share the same process 
data, but they execute in a parallel manner, which is in the same way as distinct processes. The 
system alternately assigns chunks of processing time to individual threads of the same process in a 
similar way than to other processes that run simultaneously at a specific moment. Running a process 
in parallel threads have many advantages. For example, when a given thread of numerical 
simulation is performing calculations, some other thread can simultaneously perform processing of 
already calculated results and can provide their graphical representation to the user2. 

The main problem in execution in multi-threaded regime is synchronization of data access. 
For example, as the simulation thread proceeds, it may delete the results older than the past three 
iterations. If the thread for graphical representation attempted to access these results after the 
simulation thread has deleted them, an memory access error would appear. 

 
As there are many different examples of almost inevitable use of parallel threads, there are 

also very different ways of sharing data between multiple threads. However, we can define some 
general rules for multi-thread environment. The first rule is that only one thread may owe the main 

                                                 
1 A process is an image of a program in memory that is made by the system when executing the program, together with 
the corresponding data. In multi-tasking environments many processes are executing in parallel, and the same program 
(an executable file on the disk or other storage) can be carried out by several processes in the same time (e.g. several 
identical simulations with different input data can be run at the same time). 
2 This function could be implemented serially, e.g. by inserting chunks of code that handle user requests and graphical 
representation between the code that performs calculation. However, this would be much more complicated (and in 
more complex systems, practically impossible) to implement. Execution in parallel threads enables different tasks to be 
implemented independently while they are still executed in parallel within the same process and therefore have the 
ability to access the same data. 
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handle of any dynamically allocated object, therefore de-allocation of that object can only be 
performed in the main thread. The next rule is that write access to the data must be serialized to 
prevent unexpected change of the data by another thread when one thread is using the data. 

 
One measure to insure proper synchronization is locking of the data when it is used, which 

prevents simultaneous access of the locked data by parallel threads. Locking is performed by 
integer locks whose state defines whether the corresponding data can be accessed or not. Locking 
and unlocking is performed by macros m_threadunlock  and m_threadlock  (defined in 
sysint.h ; see Example 8). Both macros take the lock as argument. The first macro waits until the 
lock is released and then sets the lock (locks the data). When a lock is set, an attempt to lock it from 
another thread will block until the lock is released by the thread that had set the lock. The second 
macro releases the lock that is set by the first macro. It is the responsibility of the user that macros 
are strictly called in pairs lock/unlock (with code that deals with locked data put between the 
matching calls) and that the locking is never performed successively within the same thread unless 
unlocking is performed between (this would cause blocking of the thread forever). The most 
common error is that locking is repeated in a nested call, i.e. it is called in a function that is called 
by the function that performs locking (or in an arbitrarily deeper level). A condition for data locking 
to work is that it is used strictly and consistently1. 

Macro m_threadlock  that sets the lock will block execution until the lock that it is 
setting is released (if no other thread has locked the same lock then the lock is set and execution of 
the thread that called the macro is continued immediately).  After the lock is set, eventual calls to 
this macro would block until the lock is released by the call to m_threadunlock . If several 
threads attempt to set the lock at approximately the same time, only one of them will succeed 
immediately while all others will block (wait) until this thread releases the lock (between that, the 
thread that set the lock would usually perform some tasks on the data that is related to the lock). 
After the lock is released, another thread will be succeed to set the lock (but only one, again), while 
other threads will continua to block until that thread releases the lock, and so forth. Locking 
therefore provides means of serializing otherwise parallel execution of code at given critical 
moments when shared data needs to be accessed. 

 

Example 8: locking of data for synchronizing parallel threads. 

 
int lock=0;  /* initialization to 0 is obligatory * / 
void *data; 
...  /* prepare data */ 
m_threadlock(lock);  /* set the lock */ 

                                                 
1 This means that all functions that may eventually use the same data during their execution, ensure by locking that the 
data can not be accessed during execution of critical function code by other threads that could eventually modify the 
data. All functions that modify the data must lock it before doing that, which ensures blocking until the lock that is 
eventually set by another threads is released. This means that either the data is modified only after the tasks performed 
in another threads that would eventually use the data are finished and release the lock, or it is modified before that (i.e. 
function in other threads block until the modification of data is finished). Locking mechanism does not itself prevents 
access to data by parallel threads, it only works if other threads use the same lock for checking and claming access 
rights for the data. 
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...  /* Do something with data; because the lock is  set, other threads that 
would try to set the lock, would block until the lo ck is released 
*/ 

m_threadunlock(lock);  /* release the lock, now som e other thread that has 
eventually set the lock will continue execution */ 

 
Different handling rules for locking data: 
More complex systems that handle a large number of related tasks usually have some static 

data that define the state of the system and are handled by system utilities1. In order to prevent 
unsynchronized access, data may be locked on several levels. Sometimes there is a lock for the 
whole systems and several special locks for particular smaller parts systems. In order to prevent 
conflicts by nested access to the same lock, it must be exactly defined which functions may set 
which locks. The main lock for the whole system can be only accessed by basic utility functions 
that are provided in the main module of the system. 

Locking individual data objects may be performed through the locks that are part of the 
object (i.e. fields of the structured data types, typically named lock ). In order to prevent nested 
locking conflicts, there may be separate locks for groups of different kinds of tasks2 that can be 
performed on a given type of data objects. Sometimes it is agreed that locks are not set by the lower 
level functions, but must strictly be set by higher level functions. 

Probably the best practice is using functions with twofold locking operation. We can provide 
utilities that work with data objects of a given type in such a way that the caller can indicate through 
an appropriate function argument whether the utility function should lock the object or not. Then 
these functions are called in such a way that they don’t lock the object if the lock has already been 
set by the calling code, and such that they lock it elsewhere. Use of twofold locking operation is 
illustrated by Example 9. 

 

Example 9: Using twofold locking mechanism on linear transformation data object. 

lintransfdata ld; 
ld=newlintransfdata(); 
...  /* prepare the data, install it in the system */ 
...   
m_threadlock(ld->lock);  /* lock the object */ 
...  /* use the data object */ 
my_func(ld,0);  /* call a function that performs op erations on data object, 

indicate by the last argument that the function sho uld not lock 
the object because it is already locked */ 

... 
m_threadunlock(ld->lock);  /* unlock the object */ 
... 
displintransfdata(&ld);  /* when not needed any mor e, de-allocate the data */ 
 
... 
 
/* Definition of function my_func: */ 
void myfunc(lintransfdata ld, int dolock) 
{ 

                                                 
1 An example is registration system of optimization problems, Section 7.1. 
2 Don’t be mislead by “groups”. There may be only one lock and two groups of utilities, those that may lock the data 
and those that may not. 
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  if (dolock) 
    m_threadlock(ld->lock);  /* lock the object if this is instructed by the 

corresponding argument */ 
  ...  /* perform the task (use data on ld) */ 
  if (dolock) 
    m_threadunlock(ld->lock);  /* unlock the object  ld if it has been locked 

within this function */ 
} 
 

 

9.2 Vector and Matrix Operations 

 
Vector and matrix types are declared in vec.h  and mat.h  in the following way: 
 

typedef struct _vector { 
    int d;      /* dimension (num. of comp.) */ 
    double * v; /* table of elements, STARTS WITH 1 ! */ 
} * vector; 
 
typedef struct _matrix { 
    int d1,d2;    /* dimensions (num. of rows and n um. of columns) */ 
    double ** m;  /* table of pointers to lines, CO UNT FROM 1! */ 
    double *comp; /* pointer to components, 0 offse t; NEVER ACCESS DIRECTLY! 

*/ 
} * matrix; 

 
Only matrix and vector elements may be set directly. Dimensions should always be set by 

the appropriate library functions for allocation or re-allocation (resize) of vectors and matrix 
objects. Dimensions and components my however be obtained (read) directly. 

 
Basic operations such as memory handling are defined in the header files vec.h  and 

mat.h . Vector components are accessed through the field (…)->v , which is an array of elements 
of type double.  Matrix components are accessed through the field (…)->m , which is an array of 
pointers to arrays of elements of type double. When a vector or a matrix of given dimension is 
created (allocated) the storage for components is allocated simultaneously. Array pointers are 
decremented by one after allocation, therefore elements are counted from 1 (not from 0 as it is 
common in C). 

9.2.1 Allocation and access to elements: 

Let us have the following code: 
 

matrix A=NULL; 
vector b=NULL; 
A=getmatrix(5,5); 
b=getvector(5); 
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Then b->v[4]  refers to the fourth element of vector b and A->m[2][3]  refers to the 

element of matrix A in the second row and the third column. Attempt to accessing b->v[0]  or A-
>m[6][1]  would be an error (because elements are counted from 1 and because A has been 
allocated with only 5 rows). Functions getmatrix and getvector were called for matrix and vector 
allocation. Both functions require dimension(s) as argument(s) and return pointers to dynamically 
allocated storage that can hold a matrix or a vector with specified dimensions: 

 
vector getvector(int dim); 
matrix getmatrix(int dim1,int dim2); 

 
Most of the derived data types defined in the library have similar functions for creation of 

objects of these types. Majority of these functions allocate the data that can be allocated according 
to specified information and return object pointers, which must be assigned to chosen basic handles. 
Basic handles can be explicitly defined variables or elements of another complex types such as 
stack  (Subsection 9.3). 

 
We can set elements directly, e.g. 
 

A->v[2][3]=10.5; 
b->v[1]=0.23; 

9.2.2 Reallocation and deletion: 

We may not set dimensions directly, e.g. the statement “A->d1=6 ”is a hard mistake 
because it changes matrix dimension without re-allocating storage for its elements. Resizing of a 
matrix can be done e.g. by 

 
resizematrix ( &A, 4, 6 ); 

 
By this call, matrix A is resized to hold 4 by 6 elements. Address of matrix basic handle 

(pointer to the data through which allocation is made) must be provided as the first argument, 
followed by the first (number of rows) and the second dimension (number of columns). Values of 
original elements should be stored before the resizing if we don’t want to lose them. Re-allocation 
can be done in a longer way, by first deleting (de-allocating) the matrix and then allocating it with 
different dimensions: 

 
dispmatrix ( &A ); 
A=getmatrix(4,6); 

 
Resizing operations are defined for many data types intended to hold a variable number of 

related elements. The first argument is usually object address (address of basic handle must be 
provided, because the pointer itself may be changed, and the rest of the arguments define the new 
size (or dimensions) of the object. For matrices, size is defined by two dimensions, number of rows 
and number of columns, respectively. 
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De-allocation (deletion) operations are defined for almost all derived data types. The 
functions usually have suffix “disp” (that stands for dispose) followed by the name of the 
corresponding type (matrix in this case). Usually the only argument is the address of the object 
pointer. The deletion operations release all the dynamically memory occupied by the object (by 
nested deletion calls, if necessary), and set object pointer to NULL. 

9.2.3 Copying and other operations: 

Another basic operation defined for many derived data types is copying. We can create 
copies of matrix A in one of the following ways: 

 
matrix C1=NULL, C2=NULL, M; 
matrix A=NULL; 
A=getmatrix(5,5); 
A->m[1][1]=1.1; ... /* Assign components of A */ 
C2=getmatrix(2,50); 
C1=copymatrix(A, NULL);  /* case 1 */ 
M=copymatrix(A, &C2);  /* case 2 */ 

 
The function copymatrix  is declared as  
 

matrix copymatrix(matrix m1, matrix *m2); 

 
In the above code, new matrix pointers C1, C2, and M are defined. The first two pointers are 

intended for use as basic matrix handles and are therefore initialized to NULL, while M is intended 
just as auxiliary pointer, which will point to one of the copies of A, whose basic access handle will 
be assigned to C2. 

The copymatrix  function requires two arguments, the matrix to be copied (represented 
by a pointer of type matrix ) and the address of the matrix which the original is copied to. In any 
case, function returns the pointer of the copy. If the second argument is NULL (case 1 in the above 
code) then a new matrix is dynamically allocated and its pointer is returned. In this case, the 
returned pointer must be assigned to some variable because it is the only pointer to the dynamically 
allocated matrix where the original of the copy is stored. If the second argument is not NULL (case 
2 in the above code) then copy is stored at the location pointed to by this argument. If the second 
argument points to a NULL matrix then the matrix is allocated with the appropriate dimensions and 
then components of the first matrix are copied to the newly created one. If the matrix is already 
allocated, then consistency of dimensions are checked first. If necessary, the matrix pointed to by 
the second argument is re-allocated to have consistent dimensions, and then elements are copied. 
This is the case in the above example where a copy of matrix A is stored in matrix C2, which has 
been allocated with different dimensions than A. After the operation, C2 will point to a matrix with 
the same dimensions as A, holding its copy. 

When the second argument is different than NULL, the returned pointer of the copy may be 
ignored, since the matrix is copied to the location specified by this argument. Sometimes it is still 
useful to store this pointer, e.g. to make the access to matrix elements easier (this is useful e.g. when 
the address specified by the second argument refers to a field of some object of a complex type, 
possibly nested in other objects). 
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Let us mention that the second argument may be address of the first arguments. Such call 
does not have any beneficial effect, but this possibility may be used at other unary or binary 
operations in order to save memory. 

9.2.4 Binary operations: 

Copying can be considered a simple unary operation on a data object (operand): a result of 
the operation performed on the operand (which is in this case a copy of the original with identical 
contents) is created (evaluated) and stored at the prescribed location. Many other operations are 
defined on vectors and matrices. 

Most commonly used are binary operations, where an operation is performed on two 
operands. A simple example is matrix summation, which is implemented by the function matsum0  
that is declared in matrixop.h  as follows: 

 
matrix matsum0(matrix m1,matrix m2,matrix *m3); 

 
The function matsum0  is used in quite a similar manner as copymatrix . The code below 

may serve as an example: 
 

Int dim1=5,dim2=7; 
matrix A=NULL, B=NULL, S1=NULL, S2=NULL, S3=NULL, M ; 
A=getmatrix(dim1,dim2);  B=getmatrix(dim1,dim2); 
A->m[1][1]=1.1; ... /* Set contents of A and B */ 
S2=getmatrix(1,1); 
S1=matsum0(A, B, NULL);  /* case 1 */ 
matsum0(A, B, &S2);  /* case 2 */ 
M= matsum0(A, B, &B);  /* case 3 */ 

 
The first two arguments of matsum0  are operands that are added together, in this case 

matrices A and B, which were allocated with consistent dimensions as it is necessary for 
summation. The third argument is the address of the matrix where the result is stored, but this 
argument may be NULL (unspecified). After performing summation, the function returns the matrix 
where the result is stored. 

In case 1, the storage address is not specified, therefore the function creates a new 
dynamically allocated matrix, stores the result of summation in this matrix and returns it. In the 
above case, the result is assigned to a matrix variable S1. S1 should not be the basic handle or the 
only pointer to an allocated matrix because in this case that matrix would be lost by assignment (i.e. 
“hanging in space”, causing a memory leak because there would be no handle to the matrix and no 
way to de-allocate it). 

In case 2, the result of summation is stored to S2, which already held an allocated matrix. 
Because dimensions of S2 were different than the dimensions of the result of operation (which is in 
the case of summation equal to the dimensions of operands), the function first re-allocates the 
matrix S2 and then stores the result to S2. As usual, S2 is returned, but the returned value (matrix 
pointer) is not used in this case. 

In case 3, the third argument is address of the second operand B, therefore the result (i.e. the 
sum of A and B) is stored back to B. The returned result (i.e. matrix B) is assigned to M, which is in 



 
 

9. Appendix: Common types and related modules   IOptLib User’s Manual 
 

 

 

 

110 
 
 

this case done only for demonstration. In the case of summation, the result can be stored in one of 
the operands without any side effects. The operation can be done in place – each pair of components 
is first added together and then stored, and the overwritten components are not needed any more. 
The situation is different e.g. in the case of multiplication where components of each matrix are 
used several times. Storing one component of the result would therefore change information needed 
for operation. Many vector and matrix binary operations are implemented in such a way that the 
necessary temporary storage is automatically allocated to perform the operation correctly when the 
result should be stored into one of the operands. However, allocation or de-allocation of the 
auxiliary storage may significantly affect the efficiency, therefore such situations should be 
avoided. 

 
Equivalent operations as those described in this Section for matrices are also defined for 

vectors. 
 
 

9.3 Stack Operations 

 
Type stack  is defined as a container type for different purposes. In computer terminology, 

the term stack is used for data structure where new elements may only be added (pushed) at its top 
(after the last element currently on the stack) and picked (popped) from the top. In this library, the 
stack  type serves many different purposes (although push/pop operations are also implemented) 
and is in general used as a table with variable number of elements. Elements may be pointers of any 
type (e.g. vectors, matrices, pointers to double, pointers to numbers, etc.). 

 
The stack  type is defined as follows: 
 

typedef struct _stack { 
    int n,r;   /* number of occupied / allocated pl aces */ 
    int ex;    /* excess at reallocation */ 
    void **s;  /* table of pointers, counting START S WITH 1 */ 
} * stack; 

 
The type is adapted to pushing new elements at the top of the stack and getting them from 

the top. Elements can also be removed from or inserted in the middle, but this is not as efficient. 
The table of elements is automatically resized as necessary. If elements are added and the table is 
full, it is enlarged, but the number of allocated places is by excess ((…)->ex ) greater than the 
minimum necessary. This mechanism is implemented for efficiency – in this way resizing is not 
necessary every time new elements are added. When elements are deleted, the size of the allocated 
space for the table is automatically reduced when the number of unnecessary spaces becomes twice 
smaller than the field (…)->excess . Therefore, greater excess means on average more efficient 
operation but also more unnecessary memory allocation, so a large excess will be chosen when it is 
expected that a stack will hold a lot of element which will be frequently added or taken from the 
stack. 
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Elements can be directly accessed through the table of elements (…)->s . Elements are 
counted from 1. For example, st->s[4]  refers to the fourth element of the stack st. We need to 
take care that we don’t attempt to access elements beyond the actual number of elements on the 
stack, which is obtained through (…)->n . (…)->r  is the allocated size of the element table (…)-
>s , i.e. the number of elements (pointers) for which table is allocated. It can be equal or greater 
than (…)->n . 

Field (…)->ex  is usually not used directly, but is used by functions dealing with stacks in 
order to determine when to reduce space for the element table or how much (excessive) space to 
allocate when enlarging the table size. However, the field may be set directly (always to a positive 
number) in order to change the operation mode of the stack and improve efficiency.  

 
 

9.3.1 Creation, deletion, resizing and copying 

Creation: 
Stacks can be created by function newstack , whose argument is excess (the number of 

excessive places at resize), which is assigned to the field (…)->ex  of the created stack: 
 

stack newstack(int excess); 

 
The above function does not allocate any space for the element table: this is done when the 

first element is put on the stack (and in this occasion more space than necessary is allocated, namely 
by (…)->ex  more elements more). Sometimes it is known in advance how many elements will be 
added to a stack at a time. In this case it is sensible to allocate element table for that many elements 
as necessary, which can be done by the function newstackr . The first argument is excess (a 
property of the created stack) while the second argument is the number of elements for which 
element table is allocated at creation: 

 
stack newstackr(int excess,int r); 

 
With the function newstackrn  also the number of elements (…)->n is immediately set to 

the allocated size of the table, and elements are set to NULL. It is caller’s responsibility to actually 
set the elements after this call. 

 
Deletion: 
There are various functions for deletion of stacks and their elements. Function dispstack  

deletes the stack without affecting its elements and may be used when elements on the stack are not 
basic handles for the objects they point to (i.e. there exist other pointers through which these 
elements can be accessed and eventually de-allocated, or pointers are addresses of static variables or 
fields of structures). The only argument to this function is the address of the stack (i.e. its pointer) to 
be de-allocated. Stack pointer is set to NULL after de-allocation. 

Function dispstackval  deletes all elements of the stack and sets the number of elements 
of the stack (…)->n  to 0. Standard function free  is used for de-allocation, therefore this function 
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can only be used when elements on the stack are simple elements. The stack whose elements are 
deleted is the only argument of the function. 

Function dispstackvalspec  acts similar as the dispstackval , except that the 
function for deletion of an individual element is specified as the second argument. If this argument 
is NULL then the standard free  function is used for de-allocation of elements. 

Function dispstackall  de-allocates the stack together with all of its elements. The only 
argument is address of the stack, and the standard function free  is used for de-allocation, therefore 
the function is only suitable when elements of the stack are simple pointers. Stack pointer is set to 
NULL after de-allocation. 

Function dispstackallspec  acts similar as dispstackall , except that a specific 
function, which is specified as the second argument, is used for de-allocation of stack elements. 
Declarations of these above mentioned de-allocation functions are as follows: 

 
void dispstack(stack *st); 
void dispstackval(stack st); 
void dispstackvalspec(stack st,void (*disp) (void * *)); 
void dispstackall(stack *st); 
void dispstackallspec(stack *st,void (*disp) (void **)); 

 
When the function for deletion of elements is specified, it must usually be cast to the 

appropriate type (which is a void function whose only argument is a pointer to a void pointer), and 
the function must be such that this is possible. In this library, most of the functions for de-allocation 
of compound data objects are defined consistently with this type. Use of this is demonstrated below 
on the stack of matrix elements: 

 

Example 10: 

int i,j,dim=4,num=5; 
stack st=NULL; 
vector aux;  /* auxiliary vector pointer for easier  access */ 
st=newstack(2);  /* allocate the stack */ 
for (i=1;i<=num;++i)  { 
  aux=getvector(dim);   /* create a new vector */ 
  pushstack(st, aux);  /* add the created vector on  the top of the stack */ 
  for (j=1;j<=aux->d;++j) 
    aux->v[j]=(double) 10*i+j;  /* initialization o f vector components */ 
} 
... /* Do something with the stack and its elements  */ 
/* When the vectors are not needed any more, we de- allocate them together 

with the containing stack: */ 
dispstackallspec(&(st), (void (*) (void **)) dispvector );  

 
In the example below, a stack is created and four vectors are created and put on the stack. 

Variable aux  is used only as an auxiliary pointer (handle) through which the created vectors are 
accessed when initializing their components. 

After vectors are created and put on the stack, they can be manipulated in various ways. 
Vectors on the stack can be referenced directly  through the table of elements st->s , but this may 
be a bit awkward because of the need of type casting (since elements of stack are declared as 
pointers of undefined type rather than vector pointers). Whenever we need to access some vector on 
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the stack, it is therefore useful to assign its pointer to an auxiliary variable that is declared vector. 
The pointer can be accessed directly (e.g. as st->s[i]  where i is the position of vector element 
we want to address) or by the function stackel , which is somehow safer because the number of 
elements is checked and invalid access prevented: 

aux=getvector(st,i);  /* get stack element */ 
if (aux!=NULL) {... /* do with a vector element wha tever necessary */ } 

 
When not needed any more, the whole table of vectors is de-allocated at once by calling 

dispstackallspec . Function dispvector  is passed as the second argument to be used for 
deletion of individual vector elements, and is cast to the appropriate type.  

Remark: 
Creation of a vector and assignment of its pointer to an auxiliary pointer variable can be 

done in the same line as push it on the stack. This is something the language syntax enables, and the 
difference is more or less aesthetic. The latter way is briefer on the level of source code but maybe 
slightly less clear for sequential thinking: 

  pushstack(st, aux=getvector(dim));  /* create a v ector and add it on the 
top of the stack */ 

 
 
Resizing: 
A stack can be resized by the resizestack  function, declared as follows: 
 

void resizestack(stack *addrst,int excess,int n,voi d (*disp)(void **)); 

 
Argument addrst  is the address of the stack to be resized. argument excess  is the new 

excess parameter of the stack (assigned to its field (…)->ex ). If it is smaller than 1 then it is set 
automatically according to the number of elements. Argument n specifies the requested number of 
elements after the operation. If n is less than the current number of elements on the stack then the 
added elements are set to NULL. If it is smaller then the excessive elements are deleted (de-
allocated) by the function disp . If de-allocation function is not specified then de-allocation is done 
by the standard function free , but this is correct only in the case when elements are simple 
pointers (i.e. they don-t point to structures containing pointers to dynamically allocated memory). If 
we don’t want the excessive elements to be de-allocated (e.g. when elements on stack are not basic 
handles but auxiliary pointers), we must manually set these elements to NULL. 

 
Copying: 
A complete stack of elements can be copied to another stack by a single call to 

copystackspec . As usual for copying operations, eventual contents of the target stacks are 
overwritten. To perform the operation, we need a methods for deletion and copying of individual 
elements, which are specified by the third and the fourth elements: 

 
stack copystackspec(stack st1,stack *st2,void dispe l(void **), void *copyel 

(void *,void **) ); 

 
Otherwise, the function acts in essentially the same manner as e.g. copymatrix  described 

in Subsection 9.2.3. Additional arguments are required merely because in the case of copying 
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matrices, we know exactly what type of objects we deal with, while the type of stack elements is 
indefinite and we must explicitly prescribe the way how elements are de-allocated or copied. 

This complication falls away when we don’t want to create new objects that are copies of 
the current elements of the copied stack, but only want to have another stack containing the same 
pointers, e.g. to order elements in a different way which is more convenient for searching. The 
following function is used for this purpose: 

 
stack copystack(stack st1,stack *st2); 

 
Let us stress again that the target stack will just contain exact values of pointers on the 

original stack rather than poiners to dynamic copies of stack elements as it is the case with 
copystackspec . Therefore, we may not e.g. de-allocate elements of both stacks, because 
elements are the same and each pointer may be de-allocated only once. What concerns the stack 
itself (without the contents), copystack  acts in a similar manner than copymatrix  or 
copystackspec . 

 

9.3.2 Element access 

Stacks1 are intended as container objects for any kind of pointer objects, therefore their 
elements are declared as pointers of indefinite type, i.e. void * . Elements of the stacks can be 
accessed directly (which is sometimes computationally more efficient), but in this case we may 
need to use type casting in order to tell the compiler what type of object we deal with. 

Let us refer to Example 10 and assume that we want to set the second component of the 
third vector element of the stack st  to 9.28. We can do this by direct access to the vector element in 
the following way: 

 
((vector) (st->s[3]))->v[3]=9.29; 

 
Vector components are addressed through the field (…)->v  and stack components are 

addressed through the field (…)->s . However, elements on the stack are of type void *  and 
without a type cast, operator ->  (combination of dereferencing and field selection) itself would be 
illegal because what is pointed to by the stack element is simply a memory location that does not 
have any structure for the compiler. By type casting (stating the type in parentheses before the 
reference to the object) we provide (in a way enforce) unambiguous information about the structure 
of the pointed object through its ordered type (vector  in this case, see Section 9.2 for 
declaration). The reference to a given element of the array (…)->v is therefore exactly defined, and 
vector component is set as intended. Type casting is only provision of information for the compiler. 
It does not give rise to any additional machine operations, therefore there is no reason for efficiency 
concerns. On the other hand, casting may be dangerous when used without the necessary caution. 
For example, if we actually had matrices on the stack st  but would cast them to vectors and assign 

                                                 
1 Here we mean objects of type stack  as defined in this library, not stacks as computer term. As explained before, 
some features of the stack  type compliy with the common definition of stacks in computer terminology, but its use in 
the library extends beyond that. 
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components as above, this would result to a disaster (very likely to program crash, and certainly to 
unexpected behavior). Compiler will not warn about such improper use of stack elements because 
there is no way to detect it1. It is sole responsibility of  the user of a stack to treat its elements 
correctly, and most importantly, the user must know which is the type of the elements n a stack2. 

 
Access to stack elements must be done cautiously. One must be sure that the sequential 

number of accessed element does not exceed the number f elements that actually are on the stack, 
which can be checked through the field (…)->n . , e.g. 

 
int which; 
... 
if (which <= st->n && which>0) { 
  aux=st->s[which]; 
  ... /* Do something with the element */ 
} 

 
The function 
 
Stack elements (pointers) can be obtained by the function stackel , which checks the 

validity of element index and returns a NULL pointer when the index is out of bounds. By use of 
this function, the if  statement of the above code would look like this: 

 
if (aux=stackel(st,which)) { 
  ... /* Do something with the element */ 
} 

 
Sometimes one may want to use the function nstack, which returns a given element of the 

stack, counted backwards from the end of the stack (argument 1 means the last element, argument 2 
one before the last, etc.)3. 

 
There are several ways to add elements to the stack or remove them from it. We have 

already mentioned the push and pop operations, which are the most efficient and add an element at 
the end or take the last element from the stack (and return its pointer): 

 
void pushstack(stack st, void *el);  
void *popstack(stack st); 

 

                                                 
1 There is maybe a theoretic chance to detect such cases of improper use, but only by tracking the code and analyzing 
what it does. Compilers don’t have such abilities. 
2 In object oriented languages such as C++, it is easier to achieve more control on this through use of template classes. 
In particular, it is easier to distinguish between stack of vectors, stacks of matrices, etc., and thus prevent e.g. vector 
operations on matrix elements of a stack. Such control mechanisms can be established explicitly in C, but this would 
either require some additional effort in cumbersome coding or additional overheads in resources because of additional 
checks). In the case of stacks, library implementation opts for plain solution that requires some caution when using the 
functionality. 
3 Functions stackel  and nstack  could be joined, e.g. by negative arguments imposing counting backwards. They 
are implemented separately in order to reduce possibility of mistakes. 
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Function insstack  inserts an element at a prescribed position specified by the last 
argument. If the position exceeds (by more than 1) the number of elements currently on the stack, 
the intermediate positions are filled with NULL pointers. Otherwise, elements after and including 
the specified position are shifted by one place towards the end of the stack. If necessary, the 
element table is re-allocated to fit the new stack size. 

Opposite operation is element removal, which is performed by delstack . The last 
argument specifies which element to take from the stack. The removed element (pointer) is returned 
by the function, and all elements after the specified place are shifted one position towards the 
beginning of the stack. If the specified position is out of bounds then a NULL pointer is returned. 
Otherwise, the number of elements (field (…)->n ) is reduced by one. 

An existing element of the stack can be replaced by another element by the function 
setstack . Function returns the replaced element that was on the specified position before. If the 
position is larger than the number of elements, stack is enlarged, intermediate positions are filled 
with NULL pointers and NULL is returned. The described functions are declared as follows: 

 
void insstack(stack st,void *el,int place); 
void *delstack(stack st,int place); 
void * setstack(stack st,void *el,int place); 

 

9.3.3 Other operations 

 
There are a number of useful operations defined for stacks such as sorting, searching, and 

collective operations such as printing of all elements. Because stacks can contain any type of 
(pointer) elements, these operations rely on specification of element level operations. For example, 
sorting and searching operations requires specification of  element comparison, which defines the 
relation “greater, equal or smaller” between two elements: 

 
int findstack(stack st,void *ptr,int from, int to,i nt cmp(void *p1,void 

*p2)); 
void qsortstack(stack st,int cmp(void *p1,void *p2) ); 
int findsortstack(stack st,void *ptr,int from, int to, int cmp(void *p1,void 

*p2)); 

 
Function findstack searches for the first element of the stack st  that is equal (in the 

sense defined by the function argument cmp) to the specified element ptr , and returns its position 
or 0 if the appropriate element could not be found on the stack. The search is performed only among 
elements on positions starting at from  and ending at to , where the value 0 of from  means the first 
and vlue 0 of to  means the last argument (in the case of excessed bounds, these arguments are 
internally corrected).  

The function findsortstack  operates in a similar manner, except that elements on the 
stack must be sorted in ascending order with respect to cmp for proper operation. Taking advantage 
of sorting means much faster operation, which is useful especially when number of elements is very 
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large. If there are more elements that are equal with respect to cmp, an arbitrary position of one of 
them is returned1. 

Function qsortstack  rearranges elements of a stack in such a way that they are ordered 
in ascending order with respect to the comparison function cmp.  

 
The comparison function must be provided by the user to define the relation, which may be 

defined in different ways for some types of data (e.g. for strings, the comparison may be defined in 
such a way that small and capital letters are distinguished or not). The agreement is that the function 
must return -1 if the first argument is smaller than the second, 0 if arguments are equal and 1 if the 
first argument is greater than the second. 

 
Collective operations are performed on all elements of the stack and include e.g. printing of 

elements. A function that performs an operation on a single element must be specified. For 
example, the following function prints to a file complete information about a stack together with 
contained elements: 

 
void fprintstack(FILE *fp,stack st,void (*fprintel)  (FILE *fp,void *el)); 

 
Argument fprintel specifies how to print contents of an individual elements. If elements of the stack 
are vectors (custom type vector ) then the function may be used in the following way: 

 
FILE *fp; 
stack st; 
…   /* set elements of st, open the file fp… */ 
fprintstack(fp, st, (void (*) (FILE *,void *)) fprintvector); 

 
Note the type casting applied to the function fprintvector , which is used to print 

contents of an individual vector, in order to comply with the requested type of fprintstack . 
 

9.3.4 Index tables 

 
Index tables are constructs which are in a way similar to stacks, but they contain elements of 

the type int  (sign integer type) rather than pointer, i.e. they can carry only integer elements. The 
reason for definition of a special type for dynamic tables of integers while stack carrying integer 
pointers could do the same job is that use of special arrays of integers is more efficient, and efficient 
is usually very crucial when e.g. tables of indices are needed. The type implementing dynamic 
index tables (tables of integers in general) indtab  is defined as follows: 

 
typedef struct _indtab { 
    int n,  /* num. of elements */ 
        r,  /* allocated space */ 

                                                 
1 If we need e.g. the position of the first of such elements (which is not so often), we can perform a simple addition 
check after the function call. 
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        ex, /* excess allowed in reallocation */ 
        *t; /* table of elements, counting STARTS W ITH 1 */ 
} * indtab; 

 
Similar operations as for stacks are defined for index tables. 
 
 
 
 
 
 

9.4 Error reporting  

 
An extensible mechanism for error reporting is implemented in the library. In its basic 

variant, the mechanism enables printing of error and warning messages to standard output (usually 
to the terminal) and to a pre-defined error file during program execution. The mechanism can be 
arbitrarily extended (e.g. by launching messages in customized windows and message boxes, or by 
searching for help tips related to message contents and showing them) without changing how the 
error reports are triggered. The mechanism provides a uniform way for reporting errors throughout 
a program that uses the library. 

 
The following is an example of reporting an error within a particular function: 
 

#include <er.h> 
... 
errfunc1(1, “testfunction”); 
sprintf( ers(),”This is a test error message. Unexpected value (%g) 

occurred.\n”, 3.33); 
sprintf( ers(),”Since this is only a test, the value was set ju st like 

that.\n”); 
errfunc2(); 

 
Three utilities declared in er.h  were used for generating an error report, namely the macros 

errfunc1  and errfunc2  and the function ers . The macros initialize and finalize the error 
report.  

The initialization macro errfunc1  stores the relevant data for the report, i.e. the error code 
and the name of the function in which the error report was launched (which must be provided by the 
caller as arguments of the macro) and the file and line number of the point where the macro is 
called (this information provided through pre-defined compiler directives and makes location of 
error in the source code easy). It also performs some other operations, e.g. checks the message 
buffer and eventually empties it. 

Custom error report must be written to a string buffer which is returned by the function 
ers(). This function takes care that the returned pointer is always at the end of eventual previously 
written contents (such as in the above case where writing on the buffer was performed twice) and 
that at minimum a given (pre-defined) amount of space is available in the buffer. 
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For information how to extend the functionality of error reporting system, see the header file 

er.h  and the error reporting module er.c . 
 

9.5 Other Libraries  

 
There are many developers around who are doing a wonderful job by developing numerical 

libraries that can provide useful tools to the global research community. Thanks to these people, 
research and also a large deal of high tech oriented commercial community can benefit from cheap 
and still reliable enough tools that significantly alleviate their development. Here we would like to 
point out that such work has an invaluable impact on scientific and technological development and 
in this way strongly promotes development of novelties that are constantly improving the quality of 
life in our society. 

Some of these libraries are also used by IOptLib:  
• Meschach – a linear algebra library 
• Mersene twister random generator 
• For research purposes that serve development of this library, the FSQP algorithm is 

used. Since this is a commercial algorithm, it is not available to users of IOptLib; for 
users who would like to have a powerful non-linear programming engine integrated 
with  IOptLib, purchase of the library can be arranged with its distributor, and 
interface modules for IOptLib can be provided that arrange integration of FSQP with 
the library. 

• SolvOpt algorithm for nonlinear programming 
 
The author of this library gratefully acknowledges the contribution of developers of these 

libraries to the existence of IOptLib at its present form. 
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11 TO DO (FOR DEVELOPERS  ) 

 

11.1 Test utilities 

 
Check the formula  (27) on restricted region constraint which works on basis of unit ball 

constraint defined on transformed co-ordinates, in such a way that transform matrix is randomly 
generated. Check also weighting functions derived from generic functions of one variable applied to 
vector norm in affine transformed co-ordinates in the same way! 

 
Implement test functions from global optimization community (described in dev\optglob)! 
 
 

11.2 Questions to answer   

 
 

11.3 Implementation plans    

 

11.3.1 Prevention of successive repetition of analyses 

In anfunccountnorepeat  (moduole optbas.c ), implement possibility of calculating 
only the missing part of the response, if one part has already been calculated at given parameters. 

 
Implement an analysis function that stores N (an arbitrary number of) last results and uses 

these results when an analysis is called at parameters for which response is stored.  
Proposed implementation: This analysis function would take an array of four pointers (say 

cd ) as definition data. The meaning of the first three would in principle be the same as for 
anfunccountnorepeat . The fourths pointer would contain address of stack containing the 
stored points. The function would check on this stack for a point with the same parameters as the 
function was called with, put address of this point (if found) to cd[3] (otherwise, put the last point to 
cd[3]) and at the same time shift other points towards the back, and perform 
anfunccountnorepeat  with definition data cd . 

Usage: this would be very useful where one might want to store a number of points, e.g. for 
later conversion to penalty function in a simplex method.  
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11.3.2 Successive approximations building blocks 

 
Opombe: 
Dodati analysispoint vsaj eno številko za dodatni utežni faktor (tako ali tako bi rabil dve celi 

in dve realni dodatni števili – zaradi tabel. 
 

• Funkcije za začetni vzorec (recimo  ). Parametri: x0, h, hvec . Smotrno: 
Najprej n+1 vzorcev (lin. Namesto kvadrat. Aproks.) 

• Funkcije za aproksimacijo začetnega vzorca (morda kar povezano s funkcijo za 
generacijo vzorca). Biti mora 100%. 

• Funkcijo za generacijo stabilizacijskega vzorca glede na trust region iz trenutne 
aproksimacijske funkcije (za kvadratno in linearno funkcijo). 

• Funkcijo za generacijo eksplicitne aproksimacije iz implicitne (npr. MLS -> 
quadratic) 

• Funkcijo za definicijo analize z dodatnimi omejitvami za restricted region (v 
optbas.c) 

• Funkcijo za kombinacijo analiz , da lahko dodamo omejitve glede dosega koraka. 
 
Pri omejitvi koraka je potrebno dodati možnost uporabe afine transformacije z omejitvijo z 

enotsko kroglo. 
 
Transformacije parametrov: smotrno bi bilo implementirati linearne in omejitvene 

transformacije!!! 
 

11.3.2.1 Priority 

• Sampling function 
o Make a simple one to act as an extensible sceleton (e.g. random first, then 

with affine transform added, and maybe much later with solving minimal 
potential problem (initial guess with transformed unit ball random, opt. 
problem with transformed co-ordinates for particele potential and restricted 
region constraint)) 

• Approximated analysis functions: linear / quadratic LS / MLS 
o Implement & incorporate weighting functions 

• Affine transform  of the problem 
o Work out rules for application of transform (e.g. whendirect/inverse 

transform is used) for a) sampling, b) restricted step constraint 
implementation and c) approximation (if applicable) 
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• Checking scheme – very simple test case, like 2D quadratic objective / linea 
constraints 

• Correct formulas for sampling region, restricted step constraint and weighting 
functions (with gradients of functions of transformed co-ordinates)! Correct 
formulas are in linapprox.doc in the appendix (double checked). 

 
 
 
 

11.3.3 Miscellaneous 
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12.1 Storage of chapters that are in the process of revision 

 

12.1.1 Agreements for use of linear (affine) maps 

 
Remark: this is an old version of Section 3.1.3. 
 
In the IOptLib, linear (in fact affine) transforms are used for several purposes which include: 

• sampling of response functions in a given domain, which can be obtained by 
transforming a unit ball 

• definition of a restricted region constraint, where the constraint function that ensures 
that the solution is included in the unit ball is subjected to co-ordinate transform 

• definition of weighting functions, which are obtained by co-ordinate transforms of 
rotationally symmetric functions scaled for a unit ball 

 
The above mentioned functions and procedures are the most easily defined and performed 

when the unit ball centered in the co-ordinate origin is the domain of interest. We define the 
transform F such that  

 
 ( ) 1−= = +x F x A x s% % , (141) 

 
or 

 
 ( ) ( )1−= = −x F x A x s% . (142) 

 
Affine transform F transforms a unit ball centered in the co-ordinate origin to an hyper 

ellipsoidal region with a center of mass s (Figure 2). In optimization methods that utilize successive 
approximations of the response, such domains are conveniently used for sampling of the response 
and as restricted region on which the approximated problem is solved in the current iteration, 
therefore also the sampling weights are defined in such a way that influence of samples on the 
approximation is significant in the domain of the same shape, centered around the corresponding 
samples. 

 
The (closed) unit ball is defined as 
 

 { }2
; 1U = ≤x x . (143) 

 
The ellipsoidal domain obtained by transformation of the unit ball by F is therefore 
 



 
 

  Sandbox     
 

 

 

 

127 
 
 

 ( ){ }1

2
; 1U −= ≤F x F x . (144) 
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Figure 12: Affine function F that maps n unit ball into an ellipsoidal domain centered 
around s. 

 
Sampling is typically done such a way that the specified number ms of random points with 

uniform probability density over volume of the unit ball are generated, say ix% . These points are then 
transformed to xi by  

 
 ( )i i=x F x% . (145) 

 
In most cases it is more convenient that the sampling points are uniformly distributed over 

volume in the unit ball rather than the transformed ellipsoidal domain, which can be very elongated. 
This is even more obvious when we obtain the samples by solution of the minimal particle potential 
problem1. If the minimal potential problem was used on the ellipsoidal domain that is expressively 
elongated along one main axis, we would obtain almost uniform distribution along this main axis 
and a meaningless zigzagging in other directions. When we want to include previously chosen 
sampling points yk in the minimal particle potential problem (in order to avoid oversampling of 
parts of the domain), these points are first transformed by inverse transforms into 

 
 ( )1

k k
−=y F y% . (146) 

                                                 
1 This ensures that the particles are as far away from each other as possible and they are not concentrated in any part of 
the sampling domains, which can happen by random sampling. 
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Then the necessary number m of ix%  are obtained from randomly distributed points in the 

unit ball (say ( )0
ix% ) from solving the minimal particle potential problem involving also the points 

ky% . Points ix%  are then transformed to xi by F. 
 
Restricted region constraints are defined by transforming independent variables of 

constraint function that correspond to limiting the domain to the unit ball. For optimization 
purposes, the unit ball constraint is conveniently defined as 

 

 
2

2
1T = ≤x x x% % % . (147) 

 
The corresponding constraint function is 

 

 ( ) 2

2
1 1T

Uc = − = −x x x x% % % % . (148) 

 
If we want to limit the domain of optimization to the ellipsoidal region obtained from the 

unit ball by F, we must apply Uc  to variables transformed by 1−F  because this function transforms 
the domain of interest to the unit ball (Figure 2). Therefore, the constraint function corresponding to 
the restricted region constraint is 

 

 ( ) ( )( )1
r Uc c −=x F x . (149) 

 
According to (28) and taking into account (36) and (37), gradient of cr is: 
 

 ( ) ( )1

2

;r ic −∇ = = −x

x
x A x A x x

x

%
%

%
 . (150) 

 
Because sampling is performed inside the ellipsoidal domain obtained by application of F to 

the unit ball, it seems reasonable that contours of weighting functions corresponding to individual 
samples will have similar shapes as this domain, but will be centered around the corresponding 
samples. Therefore we can use a similar idea for weighting functions as for the restricted region 
constraint function. We define a template weighting function ( )Uw x%  with concentric contours, 

which decays considerably on the distance 1 from the origin. Actual weighting functions are then 
obtained by applying the template weighting function to co-ordinates transformed by 1i

−F , where Fi 
is a function that transforms the unit ball to an ellipsoidal domain centered around the 
corresponding sampling point. For sampling point xi the corresponding function is 

 
 ( ) 1

i i
−= +F x A x x% % . (151) 

 
The weighting function corresponding to the sample xi is then 
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 ( ) ( )( )1
i U iw w −=x F x . (152) 

 
Because the template weighting function has concentric contours, it can be defined by a function of 
a single variable w(x), i.e. 
 

 ( ) ( )2Uw w=x x% % , (153) 

 
The weighting function corresponding to the sampling point xi is therefore 
 

 ( ) ( )( ) ( )( )1

2i i iw w w−= = −x F x A x r . (154) 

 
 

 
Function w needs to be defined only for non-negative arguments. We usually require that gradient 
of Uw  is continuous in the co-ordinate origin, which means that w must have a zero derivative in 0. 
Commonly used forms for w are Gaussian and reciprocal polynomial (Figure 3): 
 

 
( )

( )

2

,

1
, 2, 3, 4, ...

1

r
G

p p

w r e

w r p
r

−=

= =
+

 (155) 
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Figure 13: Weighting functions of Gaussian form wG(r) and reciprocal polynomial form 
w4(r). 
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According to (28) and taking into account (42) gradient of the weighting functions are: 
 

 ( ) ( ) ( )1

2
2

' ;i iw w −∇ = = −x

x
x x A x A x x

x

%
% %

%
 . (156) 

 
 
 
 
 
 


