IOptLib User's Manual

|OptLib User’'s Manual

Revision 1 (pre-release), 2009.

Igor GreSovnik




IOptLib User's Manual

Contents:
A [ 011 o T [T 1o T o T OO PRPR R 1
A = T T [ PRSP PRRR 4
2.1 PrEIIMINAIIES ...ttt e e e et e e e e e e e e e e e e a e e eee e e e e s e e e s bnee 4
2.2 Availability and Contents@ ............................................................................................. 4
2.3 Basic Data Types and FUNCLION ProtOtYPES ... . cweernareeeeeeeeeeiiiie e e e ee e e e aaeeeeennnnnns
2.3.1 Standard analysis function
2.3.2 Tools and templates for implementing analysis fiomst
2.3.3  Standard VECIOr fUNCHION ........ouiiieiiiiie ettt e e s e e e e et e e s e e s anneee s
2.4 Conversion between standard analysis and standardeetor function ...............cooeceviiinininns 12
2.4.2 Remarks on double conversion (forth & balll) ... 15
2.5 Numerical differentiation of analysiS reSUILS...........euuiiiiii e 16
2.5 1 USEI INSITUCTIONS ...ttt ettt sb ettt et e s et be e et e e s e e e s e s nneeenreeas 6.1
2.5.2 Example for developers: implementation of numerﬂiﬁérentiationﬂ? ............................................. 20
2.5.3 Extension of the numerical differentiation Systlil ... 23
2.6 Prevention of repeated analysis at the same paranegt and analysis counts............c..c........ 24
3 Basic BUIldiNG BIOCKS .......ccce e 27
3.1 Co-ordinate tranSTOrMALIONS ............uuuuuuurimmriieeiiie et e e e e e e e e e e e a e e e e e aa e e e e e e e e aanaans
3.1.1 Linear transformation of CO-0ordinates.........cccevvveiiiieeecniiiecieee e
3.1.2 Linear (Affine) maps, eigendecomposition and quédfarms....
3.1.3 Agreements for use of linear (affin€) MaPS. . oo i
3.1.4 Implementation of linear and affine MAaPRD” .........oooiiiiiii e 38
3.1.5  REeSHNCtEd StEP CONSIIAINTS.......ueiiieiiiiiitiesii ettt et e e e et e e e raat e e e stb e e e ntbe e e e abreeeesreneeeennneees 44
3.1.6 Restricted region constraints - old implementatiQn.............c...ueeiiiiiii e 47
4 Maodification and transformation of optimization prlems ..........cccccveeeeeciiieee e e a7
4.1 Combining objectives and constraints defined by dierent analysis functions...................... 48
4.2 Handling of bound constraints® ................................................................................... 51
4.2.1 Combination of discontinuous penalty functions &madsformation of co-ordinat@ .................... 53
4.2.2 Implementation remarks on penalty terms and bo@ngtcaints =2 ..........cccceeviiiiniiiiin i 58.
5 Building Blocks for Successive Approximatior@ ........................................................ 66
5.1 [ a v o (N1t i o] o HEUU T PP T TP RTRRPRTTPPON 66
5.1.1 Overview of generic utilities from top t0 DOttOML.........ooiiiiiiiiii e 67




IOptLib User's Manual

5.1.2 Basic scheme for use of approximations of analEEPONSE..........coiiiiiiiiiiiiiiiiie e e e 68

5.1.3 Basic approximation data tyPED” ......ccociuiieeiiiieieiiieie et ssnnneeeennnee 68

5.2 Implementation notesﬂT @ ..........................................................................................

5.2.1 Specific and common auxiliary data structures
5.2.2  Approximation data updating fUNCIONS ..........uueeiiiiiiiie e

5.3  Approximation utilities — To implement ﬂT @
5.3.1 Things not yet implemented
5.3.2 Efficiency issues.........ccccceennne
5.3.3  WeIghtiNg FUNCHIONS.......eiiiii ittt e e e e e ettt e e e e e e s sttt et e e e e e e e e e ennnnnbaeeeeeas

6  Optimization aIgorithms@ ............................................................................................... 82

7 Testing Systengt@ ......................................................................................................... 82
7.1 Registering an optimization problem Or tESt CASE «..........uuiviiiiiiiiiiiiiiiiiii e 82
8 Appendix: Common types and related Modules.. o vvveveeieiiiiiieiiiie e, 95

8.1 a1 (oo ¥ o3 1 o] o SO TS PPPRURRt
8.1.1 Comments on ANSIC
8.1.2  Followed programming FUIES ........cccuuiiiiiieeeetee e etie ettt e e e s s e s srtae e e annbe e e e s nneeeeeaas 102
8.1.3  Work in multi-thread enVIFONMENT ..........ooireeeei e e e e e e e e e e e e e ee e e e eaeaeeaee 103

8.2 Vector and MatriXx OPEratioNS ........coooviiiiiietie ettt e
8.2.1 Allocation and access to elements: ..........
8.2.2
8.2.3
L B = 11 F= 1A o] =T =i [0] B

8.3 StACK OPEIAtIONS ....cieiiieeeee ettt et ee e
8.3.1 Creation, deletion, resizing and copying...
8.3.2 Element acCess.......ccccveeiiiiiiiiiiniienieens
8.3.3  Other operations...
8.3.4  INAEX LADIES ...

8.4 Error reporting @ .................................................................................................... 118
8.5 Other Libraries @ .................................................................................................... 119
O FULUIE PIANS e ————— 119

10 To do (for developeriT ) ettt e e e e e e et e e e e e et aeeeae e e e e aar e ——————————————————_ 2
00 O I =T 111 = 120

10.2 Questions to answeﬂ? ............................................................................................... 120

10.3 Implementation plans ﬂT .............................................................................................
10.3.1 Prevention of successive repetition of analyses
10.3.2 Successive approximations building DIOCKS ....ccueeeiviiiiiiiiie e
10.3.3 MISCEIIANEOUS. ...ttt e ettt e e e e s e e s e e e e e e e s e eee e




IOptLib User's Manual

11 ST T gL | oo ) GO PRSPPI 125
11.1 Storage of chapters that are in the process Of FEUDN............cvvviiiiiiiiiiii e, 126
1111 Agreements for use of linear (affine) MaPS .. oo e 126

IOptLib is a freeware and comes with no warranty.




1. Introduction IOptLib User's Manual

1 INTRODUCTION

IOptLib (an abbreviation for Investigative Optimizatiorbtary) is an open optimization
library designed to sustain development and tesifrejgorithms for solving practical optimization
problems. The library is implemented ANS C but should be easy to make interfaces for use with
other programming languages such as C++, PascalFartidan. A priority goal is to develop
algorithms suited to problems with computation&ipensive and possibly noisy evaluation of the
response (i.e. objective and constraint) functiofise library is intended to provide modular
building blocks for constructing such algorithmsarslardized templates for interfacing tools
obtained form other libraries, and testing envirenmwhere different performance aspects of
algorithms can be readily extensively tested duand after the development stage. Currently most
of the efforts are devoted to algorithms based wtessive solution of approximated problems
obtained by local sampling and approximation of thsponse functions. Such algorithms have
complex designs and involve solution of many sulbfgms such as non-linear or quadratic
programming problems, matrix algebra, optimal samgp$trategies, etc. The intention is therefore
to gradually accumulate efficient routines for sdythese problems, which will lead to broader
serviceability of the library. Any attempt was matte keep open the possibility of starting
development of new algorithms or attaching to tkistent functionality at any level. The basic
library is therefore intended to be distributedrag open source under certain conditions. A couple
of algorithms will be available under different #igble terms since this is necessary to provide
the funding for library development, however theiuilding blocks together with a set of quite
useful algorithms will be provided with the basat that is more open what concerns availability.

The original motivation for the library was obtaih&n optimization of forming processes
where evaluation of objective and constraint fuontdi typically involves complex numerical
simulation with hundreds of thousands of degreefsesfdom, very non-linear and path dependent
materials, multi-physics and multi-scale phenometta As result, not only the calculation of the
objective and constraint functions takes very Itinges even on the fastest computers or parallel
architectures, but these functions often contaibstntial amount of numerical noise. These
conditions impose a substantial turn in how algonipperformance is viewed. On one hand the most
important measure of algorithm efficiency beconfesriumber of function evaluations it takes for
calculating optimum up to a given accuracy. The Cifthe spent by the algorithm becomes
somehow less important because function evaluatialisnormally require incomparably more
computational time. Because running optimizationcpdures will often be just on the limit of
affordable, the goal will not always be to find aptimal solution up to a specified accuracy, but
rather to achieve significant improvement withinadfordable computational time.

The targeted scope of the library is beyond tha aféts original motivation. It is intended
to provide a pool of algorithms for different pretis and facilities for extending this pool. Beside
that, interaction with other libraries and usetd tibrary in existing or future software is acctach
for as much as possible. A lot of stress is putdefining standard data types and function
prototypes used for different purposes, such aduatian of response functions and their

1



1. Introduction IOptLib User's Manual

derivatives or for storing results of such evalatnd their use in building approximations. These
standards are defined in such a way that routioesimilar tasks from other libraries can be easily
incorporated in the system, and functions thatcamesistent with library standards can be easily
exported in standard forms required in other safwenvironments. Wrapping functions and data
converters are provided some common cases, andayéow one can create own tools for this is
described in this manual. These standards areatkfmsuch a way that routines for similar tasks
from other libraries can be easily incorporatedhim system, and functions that are consistent with
library standards can be easily exported in stahftams required in other software environments.
This part of library design is describedSnbsectior?.3.1.

The entire Section 2 contains a short overviewheflibrary. This begins with availability
information and informative overview of library dents in Section 2.2.

The library comes with a set of basic utilitiesttaee extensively used in implementation of
basic building blocks and algorithms. This inclugeg. basic matrix and vector operations and
generic implementation of data containers suchtasks. These utilities are well documented in
source code, and Subsection 2.3 provides somemat@n for easier navigation. Various sets of
building blocks developed for construction of aifons are described in Section 3 and a short
overview of the algorithms provided with the libyas given in Section 6.

Many of elementary utilities make use of other fiibearies, which are listed in Section 9.5.
Contribution of people who designed and implemenlese libraries and made them available is
gratefully acknowledged.

‘ . 4 @ _- Comment [a1]: Change this
Notice: _-~ | notice when a closed form of the
This manual isncompleteand has currently some true gaps that could atemger correct ~ \menualis achieved
usage of the library impossible. However, thesesgamuld be easily overcome byoak at the
source codeThis is especially true because source coddasvely well documented, in particular
each important function has an introductory comnibat specifies the meaning of its arguments
and what the function does.

Of course, you will sometimes need appropriatestdolsearch for function definitions and
type declarations. Integrated development enviratignare ideal for such tasks, but file browsing
and searching utilities that are nowadays proviogavery reasonable operating system will also
do the job satisfactory.

Legend of graphic symbols:

@ - this section / paragraph / text is not yet caatgal Since nothing can be considered
definite or complete at a library like “IOptLib”his sign will denote portions of this




1. Introduction IOptLib User's Manual

i

B =

manual where more content is intended at this wemynent, but there was no time to add
it.

- Developers’ section — these contents will benofe interest for developers of the library
than its users. To define the terms — users oflitirary “IOptLib” will usually be
developers of some other software. In this docuentn “developers” is used for those
who contribute to the library itself, i.e. peopléavadd functionality and make it publicly
available, who suggest conceptual changes or whatribote free additional
documentation for the benefit of other users aneidpers.

- Consideration.
- Warning.




2. Basics IOptLib User's Manual

2 BAsics

2.1 Preliminaries

Primary subject of this library are tools for sadat of nonlinear optimization (non-linear
programming or NLP) problems, which can be formaedads

minimise f(x) xOR"
subjected to c(x)=0, iOE 1)
and c,(x)<0, jOl

X is the vector of optimization (or design) parameeté-unctionf is called theobjective function
(merit function, fithess function, cost functiondanther names are also in use) andndc; are
constraint functions that define tf@asible domain, i.e. the set of admissible points in the design
space.E is index set defining the set of equality constisaiand! is the set definingnequality
congraints. Objective and constraint functions are colledtiveferred to agesponse functions or
simply response

Calculation of the objective and constraint funetiavill be referred to adirect analysis or
simply analysis.

2.2 Availability and Content@

2.3 Basic Data Types and Function prototypes

! The termnumerical response will be used sometimes to emphasize that the respéunctions are calculated by a
numerical simulation. Similarly, the temumerical analysis will sometimes be used for analysis.

4




2. Basics IOptLib User's Manual

2.3.1 Standard analysis function

By the termanalysis we mean calculation of the response (i.e. objectmd constraint
functions) from (1), which define the optimizatiproblem.

In the source code of optimization programs oralilas, there are usually one wore
analysis functions for calculating the response. Optimization furesio which implement
optimization algorithms for solution of (1), iteraly call the analysis functions to evaluate the
response at different parameters, until convergé&neehieved. Usually the analysis functions are
passed as argument to the optimization functiohsrefore each implementation of some
optimization algorithm requires a specifigpe of analysis functions'. If we want to connect
optimization algorithms implemented in some librarngh analysis functions of incompatible type,
we must first implement a suitable interface byirde§ a wrapping functions, which are of
compatible type and call the original analysis tiors to evaluate the results.

In order to make interfacing between differentdiiies and software and development of
building blocks as easy as possible, the librarkenause oftandard analysis function type. It is
declared as

typedef
int (* anal ysi s_bas_f) (
vector param,int *calcobj,double **addrobj,
int *calcconstr,stack *addrconstr,
int *calcgradobj,vector *addrgradobj,
int *calcgradconstr,stack *addrgradconstr,voi d *cd);

This definition is enough general and suitablenfany special cases, e.g. where constraints
can be calculated separately or not from the agdtnction, or where calculation of response
gradients represent considerable or only minimeltamhal effort with respect to sole calculation of
values. Since practically every library user willvie to define analysis functions of this type in
order to use library functionality, a detailed dgstion is given below. Howeveknowledge of all
the rules described belovis not really necessary since library users can help themselves by some
tools prepared to aid defining analysis functiond ase existing examples as templates. This is
described irsubsectior?.3.2.

Table 1: Meaning, types and dimension of arguments oftdradard analysis functions.
(typeanalysis bas f). In the table below, integer numbersnparam , numconstraints and
numobjectives denote number of parameters, number of constraimdsumber of objective
functions (only O or 1 are possible), respectively.

Argument Meaning Remarks

vector param Vector of designin general, it must be allocated with correct disien, i.e.numparam.
parameters.

Flag pointers Input/output. Define | Input/output. Pointer to non-zero value means teagluation is
what to evaluate and| requested, NULL or pointer to 0 means evaluatiomas requested|

! Type of a function is defined by required typegt®firguments and return value.

5




2. Basics

IOptLib User's Manual

inform what has been

evaluated.

Output (when evaluation is requested): if evaluati® requested the
pointed value is set to O if evaluation or retufrcorresponding result
could not be done or if the corresponding respasiset defined in the
problem corresponding to the analysis function.

p=}

o

int *calcobj Objective function Requests evaluation of the objective function.
evaluation.

int *calcconstr Constraint functions| Requests evaluation of constraint functions (al package).
evaluation.

int *calcgradobj

Evaluation of
gradient of the
objective function.

Requests evaluation of the gradient of the objedtimctions.

int *calcgradconstr

Evaluation of
gradients of
constraint functions.

Requests evaluation of gradients of constrainttfans.

Storage addresses

Define address for
storage of calculated
response

Output. For each type of response there is an agtispecifying storag
address. Arguments must not be NULL when evaluatbngiven
response is requested (but may be NULL when ita§. rStorage ig
allocated/reallocated by the analysis function whegessary and ke
untouched when evaluation of corresponding resp@s®t required
When a given kind of response is requested b itat defined, the
storage would be untouched, but correspondingvfiagld be set to 0.

1%

double **addrobj

Objective function
storage.

**addrobj is set to the value of the objective ftinn. *addrobj is set tq
NULL when objective function is not defined.

stack *addrconstr | Storage for constraint Stack holdshnumconstr elements of type double *, which hold values| of
functions. constraint functions.
vector Storage for objective| Vector of dimensionnumparam, elementa are components of the
*addrgradobj function gradient. objective function gradient.
stack Storage for gradienty Stack ofnumconstr elements of typevector. Vectors are of dimension
*addrgradconstr | of constraint numparam and hold gradients of individual constraint funos.
functioins.
Definition data Additional exchange | Intended for different roles: precise definition afalysis response (e.g.
of information. coefficients of quadratic objective functions), mhg used for data
transfer between the algorithm, analysis and usttg & requests),
seamless upgrade of analysis (e.g. non-derivatnadysis upgraded b
numerical differentiation) etc.
void *cd Input and/or output, not compulsory. Typed structure of the pointgd
data is arbitrary, it is interpreted within the Bsés function. May be
NULL when additional data is not necessary. Cabiérthe analysig
function must know and obey the rules for type Eydut of the pointeg
data, which are defined on the analysis side.
Info mode When calcobj, calcconstr, calcgradobj and calcgradconstr are all NULL, the analysis functiop

All flag pointer
arguments are
NULL

operates irlnfo mode. It does not evaluate anything, but checkstatage address arguments

that are different than NULL and allocates or fdeedtes the addressed storage if necessa

such a way that all th
by the analysis funct
dimensionnumparam,

e dimensions of the allocatetage are consistent with the problem defi
ion (e.gddrgradconstr will point to stack withnconstr vector elements o
provided that there are also constraints in ésponse).

y in
hed
f

Rerutn value (int)

0 if everything is OK, usually a negative error eoof the calculation

could not be performed correctly.

There are some standard agreements about expeeteidr of the standard analysis

functions:

The functionreturns an error code, which is 0 if everything is OK,aonegative error code
if an error occurs (or at least a non-zero valdeyjumentparam defines the vector of parameters




2. Basics IOptLib User's Manual

for which the response should be calculated. &fisype vector , which is described isection
9.2, together with some basic operations providedhis data type.

Argumentscalcobj , calcconstr , calcgradobj and calcgradconstr point to
flags that define which parts of the response rhastalculated and provided via output arguments.
They stand for the value of objective function, e of constraint functions, gradient of the
objective function and gradients of constraintspeetively. A non-NULL pointer pointing to a
non-zero value means that the respective quaritayld be calculated while a NULL pointer or a
non-NULL pointer pointing to an integer whose vals® means that the respective quantity does
not need to be calculated at the particular fumctiall. If evaluation of some quantity is requested
but it could not be calculated then the functionwdt set the corresponding flag to 0O, indicating
disability to calculate the particular quantity.iFts why the request flags are passed as integer
pointers rather than just integers — in this waturre information on whether the requested
information could actually be provided can be pddsck to the caller. The agreement is that if, for
some problem, a given quantity is not defined (eogstraint functions in the case of unconstrained
minimization problem) but is requested with thepexs to the state of the corresponding flag (e.g.
calcconstraints) then the function should alsdrsstflag to O.

Each flag pointer argument is followed by the appiaie address of storage that must be
provided by the caller to store results of evabmtiTheanalysis function itself must allocate or
reallocate space for storing results whenever necessary, but there is an error if something should be
calculated but theaddress of the appropriate storage is not provided (ilee torresponding
argument is NULL), and the function should repartts errors via the error reporting mechanism
(section9.4).

There is a rule that thanalysis function should not allocate or reallocate any storage it
does not actually need (according to the evaluation requests specifiefldyypointers). There are a
number of reasons for this, one of them is premgntinnecessary consumption of CPU time and
memory resources. Another reason is provision rofi fiogical rules of function behavior for its
callers. For example, when derivative informatiemot necessary, the caller can call the analysis
function with storage address for gradients setNtLL without worrying that this will call
exceptions or breakage of program behavior. Theeisuthus logical — why should one bother with
gradient storage when gradients are not at allested?

The argumenaddrobj defines the storage address for the objectivetiomealue. If the
evaluation of the objective function is not requested (i.e. the argumentalcobj is NULL or
*calcobj is 0) or the objective function is not defined foigiven problem then this argument
may be NULL, and in any case the analysis funcsibould not do anything with the argument or
the data it points to. Whesvaluation of the objective function is requested, addrobj must be a
valid non-NULL pointer whose value is the addreksa pointer to a data unit of type double. The
pointer pointed to bgddrobj may be NULL, however. In this case it is expedtet the analysis
function will dynamically allocate data storage fieita piece of type double and set a pointer
pointed to byaddrobj to the address of the allocated storage. In giecaddrobj may also be
address of a pointer that points to a static végiabtype double, because in this case no allocati
or re-allocation would be made. However, it is prable that**addrobj is dynamically
allocated, in order to prevent troubles with inadvertent iempentations of analyses functions that
do not strictly obey the standards. The C codewliiatio the job within the analysis function may
look like this:

if (calcobj!'=NULL) if (*calcobj) /* evaluation req uested */




2. Basics IOptLib User's Manual

if (addrobjl=NULL)

if (*addrobj==NULL)
*addrobj=calloc(1,sizeof(**addrobj));
... [* 1: perform evaluation */

**addrobj=... /* 2: store calculated objective function */
} else
/* forbidden situation — evaluation requested b ut storage address not
provided */
*calcobj=0;

... I* launch an error report */

}
}

In practice, most of the described housekeepingatipas will be performed by a pre-defined
utility function (subsectior?.3.2) and the library user who creates the arslysiction will only
take care of evaluation and storage steps, dehgtett’ and “2:” in the above code.

The constraint function values are stored ostack (type described irSection9.3)
pointed to byaddrconstr , as pointers of typdouble *. Similar rules as foaddrobj apply,
except that stacks are more complex structured tgpts for which given rules for data access,
allocation and re-allocation apply. Gradient of thigjective function is stored in eector
(Section9.2) pointed to byddrgradobj , and gradients of the constraint functions areest@s
pointers of typevector on the stack pointed to lagldrgradconstr
In accordance with the above described rules, véatidrgradobj is allocated or re-allocated
by the analysis functiomvhenever necessary and only when necessary. This is the case when
evaluation of the objective function gradient igjuestedand *gradobj is either NULL or is
allocated but with wrong dimension.

Similar rule holds for*addrconstr , except that not only the stack itself is allodater
reallocated when necessary, but this is also Validts elements, which must be pointers to double.
Therefore, if *addrconstr points to a stack with more elements than theee canstraint
functions, the stack dimension will be reduced sdlindant elements will be de-allocated . If the
stack is not allocated or has smaller number ohetds than there are constraint functions, it will
be allocated (or re-allocated) together with migsifements. Of course, this will be done only
when necessary, i.e. when the evaluation of canstianctions is requested (which means when
calcconstr points to an non-zero integand constraint functions are actually defined by a
given analysis, i.e. the number of constraintsiigér than 0).

Similar rules apply foFaddrgradconstr , except that this stack holdsctor elements.
These have themselves a variable number of elenfdimsension), therefore elements are not
simply allocated or de-allocated, but also thaingnsion must be adjusted.




2. Basics IOptLib User's Manual

Argumentcd (whose name may be interpreted esetit data’!) is additional argument that
does not carry standard input or output analysia,daut is intended tbold additional data that
precisely defines the analysis. It may be NULL when no extra definition data equired and
analysis is exactly determined by its implementatioterms of analysis function. This argument is
a pointer to the data of indefinite type (void K)is on the analysis function to interpret theadat
(and thus assign an internal type to the pointed)itiis on the caller to pass the pointer thah{soi
to the data of expected type and structure.

Thecd argument may be used for more complex data exehahgch was not anticipated
for standard library utilities or optimization akifhms, therefore it may be used also for arbityari
exotic extensions of functionality such as for klkshing complex communication protocols
between optimization algorithms, numerical analysed end users of the software. Through this
concept, it is easy to provide very customized fiomality that is intended for special situationda
this can be done in such a way that implementatam still be used in a standard way, without
those extra fancy additions. Example of use otth@rgument to provide numerical differentiation
of the analysis response is providedaction2.5.

As a simpleexample we may define the analysis function that represemconstrained
minimization problem with quadratic objective fuiect. In order to exactly define the optimization
problem, we need additional information, i.e. cméghts of the quadratic function (since the
analysis function is intended fany quadratic function, not only for some particulandtion with
coefficients known in advance). The analysis fuorctmay be designed in such a way that
coefficients must be arranged into a vector in ecgig order. Therefore, the parameter may
simply be a vector of the appropriate dimension.

Info mode:

When all flag pointer argumentsa(cobj, calcconstr, calcgradobj and calcgradconstr) are
NULL, the analysis functions operatesiifio mode. This means that nothing is evaluated, but the
data storage with corresponding address arguméfesedt than NULL is allocated or re-allocated
(if necessary) with the appropriate dimensions.sTtén be used to establish the number of
constraints and whether constraints and/or objedtinction are defined at all for a given problem.

Warnings:

Usage of result storageWhen calling the analysis function, the admiss#tége of the data
used for storage of results is relatively free. @halysis function will do the necessary allocaton
re-allocation by itself. However, there are sonsdrietions. Shortly speaking, automatism can only
be expected when correct operation is possible. nétrex data pointers addressed by storage
address arguments are not NULL, they must pointh® data of correct type. For example,
addrgradconstr (when not NULL) must either point to a NULL pointer to an allocated
stack pointer. In the latter case, the stack may havaemrrect number of elements, but all of
them must be of typgector . Vector elements of that stack may be of incordiniensions.

! In order to explain the teratient data, imagine that we have an stand-alone optimizatmckage and an independent
software package for direct analyses (which mayef@ample, include tools for finite element numatisimulation of
some process). The analysis package may be imptethes a server that serves requests of optimizg@@zkage.
Optimization package acts as a client to the armpyackage and sends requests by calling functionsistent with the
standard analysis type. Beside the standard ingptib data, the optimization software can passiatguocd, which is
set by the client data in order to pass to theeseadditional information about what the client ¥&n.e. what type of
analysis should be performed. Of course, the typkstructure of the data passed must be agreedvanee by both
software packages.




2. Basics IOptLib User's Manual

However, either when the number of stack elemenisdorrect (i.e. not equal to the number of
constraint functions) or the dimensions of somisoélements are inconsistent (i.e. not equal ¢o th

number of optimization parameters), the stack émélements must be dynamically allocated and
their pointers must be the actual access handlely. i® this way eventual re-allocation may be

done harmlessly. Once again, storage allocatiohusilally not done explicitly by the designers of

analysis functions, but functions provided by tibedry will be used insteadbsectior?.3.2).

2.3.2 Tools and templates for implementing analysis funans

For many users it may be a true nuisance to impitrealyses functions according to the
library standards, while adhering to the above imaet rules enables a high level of flexibility
when using the library or implementing new toolbefiefore, the user can use the provided pre-
defined tools that do a large part of the job, &mds concentrate only on implementing the
procedures for calculation of the analysis response

When implementing an analysis function for a giwdess of optimization problems, it is
recommendable to start form simple examples pravidethe library source code. The function
testanfunc  that is found inoptbas.c is provided especially for this purpose. The fiorct
defines a simple optimization problem with two desiparameters and two constraints, and
therefore it features most of what average useltsewér need to take care of when implementing
such functions. In order to implement a new analfiginction, one can copy this template and just
replace those parts of code where response isatedland stored. For storage of the response, one
needs to know some basic things about the vectbstatk types, which are outlined $®ction9
(Subsection8.2and9.3).

In order toallocate the space for storage of results, check and reporinconsistency in
arguments and ensure proper operation of the analysis fandti info mode (this is the case when
the analysis function is called with all flag parg NULL, seeSub-sectior?.3.1), we should use
the functionpr epanf uncbas, which is declared as follows:

int  prepanfuncbas(vector param, int *calcobj, double **addrobj, int

*calcconstr, stack *addrconstr, int *calcgradobj, v ector
*addrgradobj, int *calcgradconstr,stack *addrgradco nstr,void
*clientdata, int nparam,int nobj,int nconstr,int de robj,int char

*funcname,char *filename,int fileline);

This function is called within of a standard anayfsinction (of typeanalysis_bas_f
seeSub-sectior?.3.1). First group of arguments are the samerathéoanalysis function (names of
these arguments are listed in the above declarafiibnthe same names as in the description of the
standard analysis function) and arguments of tladyais function must be passed literally in their
place. The next set of arguments define informattian is specific for the problem implemented by
the analysis function, and these information mustpibovided and passed within the analysis
function:

10



2. Basics IOptLib User's Manual

nparam is the number of parameters of the problem. Ifgtablem is defined for a fixed
number of parameters, this number must be passkdiwise the actual number of parameters
(defined as dimension gfaram) or 0 may be passed.

nobj must be 1 if the objective function is defined tloe problem, or 0 if it is not.

nconstr must be the number of constraint functions.

Arguments derobj and derconstr  specify whether derivatives (gradients) of the
objective functions and constraint functions, resipely, can be calculated by the analysis
function. 0 must be passed if the correspondiniyaléves can not be calculated, or 1 if they can.

Other arguments provide the necessary informatomeporting errorstuncname should
be the name of the analysis function in whgrepanfuncbas is called, andilename and
fileline should be the name of the source file and linebemahere the function is called (this
information is not vital for function operation, tois necessary for correctness of information
provided in eventual error reports). The last twguaents are usually provided through pre-
defined compiler macros FI LE___and__ LI NE__ (note double underscores in macro names).

The functionreturns 0O if the analysis should proceed with evaluation of the requested
results,a negative error code if an error occurred (mainly this would mean insistency of input
arguments) ot if the analysis function was callediiio mode.

Schematically , the function is called within theabysis function in the following way:

int ret =0; /* return value of analysis function * /
. [* other declarations */
. I* eventual auxiliary code to determine param eters of operation, e.g.
on basis of the client data and/or other arguments — specific for
the analysis function */
if (! ( ret=prepanfuncbas ( ..., /* arguments of the analysis function */
<nparam>, <nobj>, <nconstr>, <derobj>, <de rconstr>, <funcname>,

__FILE_, LINE_)))

... I* Evaluation and storage of results; storag e space has already been
allocated by prepanfuncbas */
}

return ret;

Arguments that are replaced by “...” are the argus@fitthe analysis function in which
prepanfuncbas is called and are literally copied from the argamblock of that analysis
function. Arguments in angle brackets (< >) areppred within the analysis function before the
call, and the last arguments are pre-defined canpibcros that are stated literally (during compile
time these macros are replaced by constant vahat¢sdefine the name of the source file and the
line number where the macro is called). An exampfleuse can be found in the previously
mentioned functiotestanfunc  in optbas.c

11



2. Basics IOptLib User's Manual

2.3.3 Standard vector function

As equivalent to standard analysis functions, tiegetype vec_bas_f for calculating vector
response in which all parameter dependent funcémasqually treated as components of a vector
function. Definition is

typedef int (*vec_bas_f) (vector param, int *calcva I, vector *valaddr, int
*calcgrad, matrix *gradaddr, void *clientdata);

Similar to standard analysis function, this funatitakes vector of parameters as first
arguments, and then pointers to calculation flagkowed by corresponding storage addresses.
There is no distinction between different indivitifumction, so values of all of them are storecto
vector addressed hwaladdr . Gradients of components are stored (if requesmtelif they can be
calculatedby rows' in the Jacobian matrix pointed to sadaddr . The argumentlientdata
is reserved for additional definition data thatafies how the function is calculated (it can camta
coefficients etc.).

2.4 Conversion between standard analysis and standarctor
function

The standard analysis function (typealysis_bas f , Section2.3.1) has been designed
to fit well the needs of calculating the responsénihg optimization problems. One of the design
features is that the objective function is distiisged (at least in the level of code design) from
constraint functions. This suits well the role hretoptimization problems of class (1), but for
various analysis tasks objective and constrainttfans may be treated equally, since from analysis
perspective both objective and constraint functaesjust functions defined on the same parameter
space. Therefore, for some tasks representatioaspbnse by the standard vector function (type
vec_bas_f , Section2.3.3) where all response functions are treate@dlBgas components of a
single vector function, may be more suitable. ese tasks (numerical differentiation described in
Section2.5.1.22.5 is an example) a seamless conversiarebatboth type of functions is provided.

The basis of conversion is the conversion tgpalysis_to_vecfunc_cd (defined in
optbas.h ), which is a pointer to the structure that corgaall the data necessary for conversion
and also the auxiliary data for storage of intenaiedresults. This type is intended for conversion
in both directions. Basic data it contains are filmgction pointer (address of the function to be
converted), definition data for that function angkmtually the function for de-allocation of the
definition data, for either type of function thateds to be converted. Conversion is performed

! Sometimes it is beneficial to have the matrix oddients such that gradients are stored by rowserahan by
columns. Conversion between the two forms is dam@lg by transposition, using e.g. functiomttransp0  from
matrixop.c

12



2. Basics IOptLib User's Manual

simply by preparing the conversion data object ealling the appropriate conversion function
(with the prepared conversion data as its definitlata) instead of the original one.

Declaration of the function that converts from ttandard analysis (analysis_bas_f) to
standard vector (vec_bas_f) form is

int vecfunc_froman(vector param, int *calcval, vect or *addrval, int
*calcgrad, matrix *addrgrad, analysis_to_vecfunc_cd cd);

The opposite conversion is performed by the fumctio

int anfunc_fromvec(vector param, int *calcobj, doub le **addrobj, int
*calcconstr, stack *addrconstr, int *calcgradobj, v ector
*addrgradobj, int *calcgradconstr, stack *addrgradc onstr,

analysis_to_vecfunc_cd cd);

Example 1 below shows how conversion can be apjtieatder to use a fictitious vector
function my_vecfunc for the definition of the objective function andnstraints of the
optimization problem, and performing optimization the problem defined in this way. It is
assumed that the vector functions takes a matrooefficients as its definition data. In order seu
this function as definition of the optimization ptem and perform optimization, we need to
perform conversion to the standard analysis forth.w& need to do is to create the conversion
object of the typeanalysis_to vecfunc_cd and set the address of the vector function
(my_vecfunc in this case) and pointer to the definition dataatfix coef) on the conversion
object (function for de-allocation of vector furastidefinition data is set to NULL because the data
will be de-allocated independently of the conversidata). After that, we can use the analysis
function anfunc_fromvec with conversion data as definition data. This tiorc calls the
appropriate vector function with its definition ddfound on the conversion object) and re-arranges
the results of the vector function in the returdath of the (converted) analysis function.

Example 1: Conversion of standard analysis to standard végatmtion.

matrix coef=NULL;

analysis_to_vecfunc_cd convertcd=NULL;

... I* Definition of coefficients for the vector f unction, etc. */
/* Preparation of conversion data: */

convertcd=new analysis_to_vecfunc_cd();

convertcd->vecfunc=my_vecfunc; /* original vecto r function */
convertcd->veccd=coef; /* vector function defini tion data */
convertcd->dispveccd=NULL; /* de-allocate definiti on data elsewhere */
convertcd->numobj=1; /* The first component of the original vector function

is treated as the objective function (and the rest as constraint

functions) */

/* Use of the analysis functioin that has been conv erted from vector
function, in optimization: */
optimizebas(..., anfunc_fronmvec , convertcd);

... I* Do something with results */

13



2. Basics IOptLib User's Manual

/* Clean-up: */
dispmatrix(&coef);
disp analysis_to_vecfunc_cd(&convertcd)

2.4.1.1 Preparation of conversion data

Currently there are no special functions for praef)an of conversion data. However,
preparation is simple enough to be done manually j\Wst need to create the conversion data object
of type analysis_to_vecfunc_cd and set the fields that define the function thatuld be
converted to another form (either the standardyaiglor vector function). See Example 1 for
conversion of vector form to analysis form. The agife conversion is done similarly, except that
we need to set fieldanfunc , ancd and dispancd instead ofvecfunc , veccd and
dispveccd , respectively.

2.4.1.2 Definition of conversion type@
Definition of the conversion data type fptbas.h ) is as follows:

typedef struct _analysis_to_vecfunc_cd {
int type,id; /* Type and unique ID */
int numparam,numobj,numconstr,numval;
vector param; /* Vector of parameters */
int calcobj; /* beginning of data for analysis function: */
double *obj;
int calcconstr;
stack constr;
int calcgradobj;
vector gradobj;
int calcgradconstr;
stack gradconstr;

int anret; /* end of data for analysis functio n*/

int calcval;

vector vecval; /* beginning of data for vector f unction */
int calcgrad;

matrix vecgrad;

int vecret; /* end of data for vector functio n*/

/* Data for performing analyses: */

analysis_bas_f anfunc;

void *ancd;

void (*dispancd)(void **);

int anblockgrad; /* inhibit gradient calculation by anfunc */
/* Data for evaluating vector function: */

vec_bas_f vecfunc;

void *veccd;

void (*dispveccd)(void **);

int vecblockgrad; /* inhibit gradient calculat ion by vecfunc */
/* Auxiliary data for additional operations such as line search or

numerical differentiation: */
int recordan;

int recordvec;

stack anpoints;

14



2. Basics IOptLib User's Manual

stack anstore; /* storage for unused analysis po ints */
/* void (*dispanpoint) (void **); */
stack vecpoints;
stack vecstore; /* storage for unused vec. func. points */
* Auxiliary points for intermediate results: */
analysispoint auxanpt;
vecfuncpoint auxvecpt;
} *analysis_to_vecfunc_cd,;

2.4.2 Remarks on double conversion (forth & backﬁh

The same conversion object of typealysis_to_vecfunc_cd can be used for two
opposite conversions at the same time (i.e. fromstandard vector function to standard analysis
function and vice-versa). Undesirable interfererinesich scenarios are prevented by using distinct
auxiliary data for the two opposite types of cosuen.

For example, conversion from standard vector todsted analysis form uses auxiliary data
fieldsvecret ,calcval |, calcgrad ,vecval andvecgrad forintermediate storage of results
of the vector function (field (...)->vecfunc). Thesssults are converted to the form convenient for
the standard analysis function before copying thenthe output arguments of the conversion
function (usuallyanfunc_fromvec ). For the intermediate storage, the fiéld)->auxanpt of
type vecfuncpoint (designed specially for storing results of vedtorctions) is used. We could
have used the fields anret, calcobj, calcconstcgeadobj, calcgradconstr, obj, constr, gradobj and
gradconstr as well. However, these fields are adsal by functions for the opposite conversion (i.e.
from analysis to vector form) for storing resulfstiee converted analysis function, therefore such
use could cause undesirable interference. We trerafse different storage on the conversion
objects for storage of function results (eitherstdndard analysis or vector function) and for
intermediate storage of converted data

This is especially useful when only a temporaryvassion to a specific form is necessary in
order to perform some operation that is implemefaeadne form of response functions but not for
another. A typical example is numerical differetitia (see Section 2.5). This operation is
implemented for standard vector functions (tyee_bas _f ) while we would sometimes like to
use it for numerical differentiation of analysispense calculated by a standard analysis function
(type analysis_bas f ). Rather than implementing the same operationewige can use
conversion from analysis to vector function, diffietiate the results of the vector function, and
convert the function that calculates the numenigatients of the vector function back to analysis
function. In this case, we need the (converted}oreftinction just for performance of numerical
differentiation (in order to calculate gradientattiare not provided analytically), while in thedin

! Actually, intermediate storage for converted diatantroduced just for convenience. Alternativetgsults of the
converted function could be directly copied to th&put arguments of the conversion function. Witteimediate
storage, we can simplify things by treating allgpkcases (i.e. storage addresses defined ocaloylation of specific
response requested or not, etc) separately frormecsion between two different forms of data arraneet (i.e.
analysis versus vector form).

15



2. Basics IOptLib User's Manual

stage we would like to operate on the analysistfancThe above described system enables use of
the single conversion data pointer for both ways adnversion (with other words,
anfunc_fromvec  andvecfunc_froman  will use the same definition data). S@ab-section
2.5.2 on more details how this is implemented.

2.5 Numerical differentiation of analysis results

The role of this chapter is twofold. The first patescribes how to use numerical
differentiation of a given analysis function, whishimplemented in the library. This part is of the
sole interest for users of the library.

On the other hand, the second part of the chajtes g more detailed specification of
implementation concepts and is meant as an insteugxample of how a given task is
implemented in the library. While the first partivide interesting for users of the library, the aed
part is mainly intended for people who intend taitcbute development work to the library or to
extend the library for their own needs. These resadan read only the introduction of the first part
of the chapter and skip to the second part, unfleeg will use the numerical differentiation
functionality.

2.5.1 User instructions

2.5.1.1 Numerical differentiation: background

Differentiation of the numerical analysis referscaculation of gradients of all functions
that define the analysis, i.e. the objective angstraint functions. In some cases, analysis funstio
may be able to provide analytical derivatives. @#liee, we can perform numerical differentiation
if we need the derivatives. The simplest approadb use a finite difference method with the same
parameters for each function:

0 () _ F (%X + 0, )= F(x) @)
dx h

Instead of the forward difference formula (2) theckward or central difference formulas
can also be used, which are also simple and diceotulas, except that the central difference
requires two additional function evaluations fockealerivative instead of one (and is therefore
more precise, exact for quadratic functions).

16



2. Basics IOptLib User's Manual

There are also more complex formulas where the eumbadditional function evaluations
is not even known in advance. For example, we aampte functiorf in a number of points;, Xz,

..., Xm, calculate some kind of interpolation or approxiom f of f on basis of the sampled data
f(x1), f(x2), ..., f(xm), and calculate the approximate derivatives awakdres of the approximation
f . Adaptive schemes can be used, which estimateamcwf the approximation and sample in

additional points with automatic adaptation of shngp domain until accuracy is optimal or
satisfactory.

In optimization, the response consists of more tions, usually one objective functidn
and several constraint functiogsWe can consider the overall response est@ar function g,

g(x) =[f (x), ¢.(x).....c,(x)]. ®3)
2.5.1.2 Use of numerical differentiation

Let us say we have an analysis function caleg analysis , which calculates the
objective and eventually the constraint functions ¢dan not calculate their derivatives with respect
to parameters. The analysis function must be ofthedard form, i.e. of typgnalysis_bas_f
(section2.3.1). We would like to solve the optimization Ipiem defined by this analysis function
by using a gradient-based algorithm implementedhlkyfunctiongrad_optimize (the name is
fictitious and can refer to any gradient based rtlgm that is actually implemented).

For generality, we will assume that the analysigfion requires additional definition data
of typemy_an_def and that the functioprepare_an_def is used to prepare this definition
data and the data can be de-allocated by the &mdgclared as

void disp_an_def (my_an_def *addrdef);

In order to perform the optimization, we will dedimnew analysis function, which takes the
function my_analysis  (together with its definition data) for calculairthe response and
numerically differentiates the response whenever required, returning the response and its
numerically calculated derivatives (if requestddjis is done in the following way:

Example 2: Setting up an analysis that numerically differates the originally provided
analysis function (and data) and using it for geatibased optimization.

my_an_def andeforig=NULL;
analysis_bas_f gradfunc=NULL;

analysis_to_vecfunc_cd gradcd=NULL,;
void (*dispgradcd) (void **)=NULL;
double numderstep;

Hﬁmderstep=1.0e-6;
prepare_an_def(..., &andeforig);

17



2. Basics IOptLib User's Manual

pr epanf uncnungr ad( my_anal ysi s, (void *) andef ori g, (void (*)(void **))
di sp_an_def,
numderstep, NULL, 0, 0, O,
&gradfunc, &gradcd, &dispgradcd );

grad_optimize(..., gradfunc, gradcd,..);

if (dispgradcd!=NULL && gradcd!=NULL)
dispgradcd((void **) &gradcd);

The functionpr epanf uncnungr ad has has been used for preparation of the analysis
function for numerical derivation of the originalprovided response and its definition data. The
first two arguments of this function are the orgianalysis function and its definition data.

The function chooses the pre-defined analysis fondhat will perform the analysis with
numerically calculated gradients (its address igtewr to gradfunc in the above example) and
prepares dynamically allocated definition datatfos analysis (its pointer is storeddgoadcd in
the above example). The function also sets theeaddof the function for de-allocation of the
definition data for analysis with numerical grad&nwhich is used at the end to de-allocate the
created definition data.

If the function for de-allocation of the originakfihition data (in this case ) was not
specified (i.e. NULL was passed as the correspgndigument t@repanfuncnumgrad ), then
de-allocation ofyradcd would not de-allocate the definition data. Thisiseful when we want to
further use the original definition data

According to the current implementation, we dorged theprepanfuncnumgrad  to
store the analysis function for numerical diffefation and the function for de-allocation of its
definition data, since these are known in advaibe analysis function (its address is stored to
gradfunc ) isanfunc_fromvec while the function for de-allocation of the defioh data (its
address is stored ttispgradcd ) isdi spanal ysi s_to_vecfunc_cd. We could have used
these functions directly instead gfadfunc  anddispgradcd , however, provision of function
addresses byprepanfuncnumgrad enables extensions of the system for numerical
differentiation of the analysis response and isetfuge safer to use.

The parametemumderstep defines the scalar step used for numerical diffiigion. The
step can be separately provided for each desiganpeer, which is done by a vector argument
following the scalar step (if this argument is NUtHen a scalar step is taken).

Declaration of the function that prepares datanfamerical differentiation and the meaning
of its argument is as follows:

analysis_to_vecfunc_cd pr epanf uncnungr ad(analysis_bas_f anfunc, void *ancd,
void (*dispancd) (void**), double step, vector vste p, int backdif,
int quadratic, int noforcenum, analysis_bas_f *addr func,
analysis_to_vecfunc_cd *addrcd, void (**addrdispcd) (void **))

! This may be the case, for example, when the camje from Example 2 is done within a function ahd original
analysis function and its definition data are pddsem the calling code as arguments of this fuorctin this case, the
caller would create the original definition datadamould also have the responsibility to destroy-dtlecate) it when
not needed any more.

18



2. Basics IOptLib User's Manual

Functionprepanfuncnumgrad  creates (allocates) amlepares the definition data that
will be used for the analysis that undertakes tinerical differentiation of the original response.
Pointer to this data is returned by the functiod stored tdfaddrcd  if this argument is not NULL
(either the address of already allocated data arMJLL pointer can be passed). After preparation,
the definition data contains the address of thgimal analysis function (provided through argument
anfunc ) and its definition data (provided through andathich may be NULL if a definition data
is not necessary for the original analysis).

The analysis function that eventually performs nidcaé differentiation of the original
analysis is provided through the output argunaglttrfunc . The address of the function is stored
in the pointer pointed to by this argument, whit¢towd be of typeanalysis bas f . The
provided function can be used as the original amsffunction, except that the provided definition
data (the returned pointer) is used and that thetion is able to provide gradients of the response
by automatic numerical differentiation of the onigl response whenever necessary.

Since the definition data is dynamically createdshiould be de-allocated after use. This
should be done by the function whose address iviged through the output argument
addrdispcd . De-allocation by using this function also de-adites the definition data for the
original analysis provided that it had been prodidy the argumerdncd (i.e. if this argument
was not NULL wherprepanfuncnumgrad  was called) and also the appropriate de-allocation
function had been provided by the argumdigpancd . If that argument is NULL then de-
allocation of the created definition data will redtect the definition data for the original funatio
(its de-allocation can be performed elsewhere).

Arguments of the function are described in moraitieelow.

anfunc is the original analysis function whose respongkb& numerically differentiated
by the provided function.

ancd is the definition data for the original analysimétion (may be NULL if the analysis
function does not require any particular definitaata).

dispancd is an optional argument (it may be NULL) that sfies the function for de-
allocation (destruction) of the definition data fwiginal function (defined by the argumeartcd ).
If it is non-NULL then de-allocation of the creatddfinition data (provided througiddred ) will
also de-allocatancd by using this function. If it is NULL, de-allocati of the created definition
data will not attempt to de-allocate the originefidition dataancd .

step specifies the step length for numerical differatitin (i.e. the amount for which
optimization parameters are perturbed when perfagnmumerical differentiation). It should be a
positive integer.

Vector of stepsvecstep may be specified to define the step length folheaarameter
separately. If specified then it must have the sdimeension as the design space (equivalently, the
vector of parameters). Its components have the saeaming ash in equation (2). If it is NULL

then the scalastep is taken for perturbation in all co-ordinate direns.

The argumentbackdif , quadratic , andnoforcenum define flags, which define how
numerical differentiation is performed. The valuedh be used for all of these arguments. Their
meaning is the following:

backdif : if non-zero then backward difference scheme igopmed instead of forward
difference.

19



2. Basics IOptLib User's Manual

quadratic : if non-zero then a central difference schemepjsiad where each derivative
is calculated by performing two additional analyaeperturbed parameters.

noforcenum : if non-zero then original (analytical) derivatsvare used if they can be
provided by the original analysis function. Thisidze used to set up the analysis function which
automatically performs numerical differentiatioritifs necessary, but uses the originally provided
derivatives if their calculation can be performertioe original analysis function.

addrfunc  (output argument) is the address of the variaiblshpuld be of function type
analysis_bas_f) into which the address ofribe analysis function (that will provide gradients by
numerical differentiation) is stored. We can pasf_N for this argument, in this way it is assumed
that we know which analysis function is used fomeuical differentiation. Currently, this particular
function is alwaysanf unc_f r omvec. However it is safer to obtain the function addrdésough
output argumenaddrfunc  because the system may be extended in the fuisech a way that
different functions will be used.

addrcd (output argument) is the address of a pointer hickvthe (address of) newly
created definition data for the analysis undertgkiumerical differentiation is assigned. The
analysis is performed by the function whose addestored tdraddrfunc , thereforetaddrcd
will point to the definition data that must be useih that function. The data is dynamically
allocated, therefore it must be de-allocated whatneeded anymore. De-allocation is done by the
function whose address is stored in the next argunihe argumenaddrcd may be NULL
because the created definition data is also reduogehe function.

addrdispcd  (output argument) is the address of the functimintpr to which the (address
of) function for de-allocation of the definition tdais stored. This function must be called to de-
allocate the definition data pointer that is storédd *addrcd or returned by
prepanfuncnumgrad . This argument may be NULL, in which case it istased that the caller
knows how to de-allocate the created definitiorad@urrently only one type of the definition data
is used and can be de-allocated by the fundispanalysis_to_vecfunc_cd , however the
system may be extended in the future and it isetbez safer to perform de-allocation by the
function provided through the argumexatdrdispcd

Function returns the created definition data for the analysis tphatforms numerical
differentiation of the original analysis.

2.5.2 Example for developers: implementation of numericatifferentiation

il

Form (3) where objective and constraint functiores taeated on equal terms is somehow
more convenient for implementation of numericafatiéntiation. Basic variants of functions for
numerical differentiation of the analysis respoase therefore not implemented for functions of
type analysis_bas_f (section2.3.1), but for functions of typeec bas f (Section2.3.3)
representing vector functions. [Numerical diffeiain of analysis response is therefore performed
in such a way that response is converted to a véatation, which is differentiated numerically,
and vector response with its numerical derivatilegonverted back to analysis response with
numerical derivatives. Conversion between differesponse is just re-arrangement of data.

20



2. Basics IOptLib User's Manual

Calling scheme is shown in Figure 1. Numericalegt#htiation is actually performed by the
function vecfuncnumgrad , which differentiates the response obtainedrégfunc_froman
This function just calls the original analysis ftino and converts its response to vector form teefor
returning it. The functioranfunc_fromvec  re-arranges the numerically differentiated respons
returned byecfuncnumgrad and returns it. This function can therefore berdessly called
instead of the original (possibly non-derivativelalysis function to provide response gradients in
additional to the response itself. In order to glte the gradients, the original analysis is
calculated several times at perturbed parametdrghws done byecfuncnumgrad that calls
the original analysis indirectly througlkecfunc_froman . This is however not seen by the caller
who calls theanfunc_fromvec  just like any other standard analysis function.

Crucial for the system to work correctly is the lga&s definition data for the outer-most
level anfunc_fromvec , which contains the definition data for all indewvels and also some
auxiliary storage which abolishes the need forcallion and de-allocation in subsequent &alls
Processing overhead is therefore limited to trapson of data from one form to another (i.e. from
analysis to vector and then back to analysis foam)l to two additional function calls (for
conversions from analysis to vector form and baak)ich could be avoided if differentiation was
performed directly on the analysis response. Thissually negligible as compared to unavoidable
additional calls off the original analysis at ttertpirbed parameters.

It is indicated in Figure 1 which definition data used in outer and inner level calls.
Definition data of type analysis to vecfunc cd , which is created and returned by
prepanfuncnumgrad  through the argumeniddred 2 (and is denote@D in Figure 1), is used
by the outer-most functionanfunc_fromvec 3. The same definition data is used by
vecfunc_froman , which converts analysis response to vector respoMhe outer-most
anfunc_fromvec  calls the vector function CD->vecfunc (which ig s@vecfuncnumgrad )
with definition data CD->veccd. On the other havekfunc_froman  calls the analysis function
CD->anfunc (which is set to original analysis fuantwhise response should be differentiated)
with definition data CD->ancd (which is the originkfinition data).

CD->veccd is dynamically allocated definition dafaype vecfuncnumgradcd, designed in
particular for numerical differentiation of vectdunctions (type vec bas f) and used by
vecfuncnumgrad . This function calls (for evaluation of non-detive vector response) CD-
>veccd->vecfunc, which is set wecfunc_froman , with definition data CD->veccd->veccd,
which is set back to CD.

! Allocation of intermediate result storage is damdy in the first call. In subsequent calls, alrgadlocated space is
used. This auxiliary space is de-allocated whendtfinition data for analysis with numerical diéatiation is de-
allocated.

2 Function for de-allocation of the created defanitdata is returned through the argunsadrdispcd

3 Address of this function itself is also providey prepanfuncnumgrad  (through the argumerdaddrfunc ),
which makes the system extensible. This functionveds vector response (on which numerical diffeéagion is
actually performed) back to analysis response. ddiler can just usdispanalysis_to_vecfunc_cd for de-
allocation (normally, this function will be provideby prepanfuncnumgrad ). Using the provided function enables
extension of the mechanism without affecting theecthat makes its use, however it is not foreskeatthe type of the
definition data could change.

21



2. Basics IOptLib User's Manual

type:analysi_bas_f
set byprepanfuncnumgrad through argument addrfunc
Returns numerically differentiated response ofdafiginal analysis, converted from|
(numerically differentiated) vector response.
type:analysis to_vecfunc_cd
/7 created byrepanfuncnumgrad and returned through addrcd
T

T
anfunc_fromvec (par., ..., CD)
=CD->vecfunc, typevec_bas f
Returns numerically differentiated vector respoetseverted from original analysis
response.
type:vecfuncnumgradced , dynamically
/ allocated byprepanfuncnumgrad
7 7
vecfuncnumgrad (par., ..., CD->veccd )

=CD->veccd->vecfunc , typeec_bas f
Returns vector response converted from responsggbhal analysis function.

=CD->veccd->veccd

vecfunc_froman(par., ..., CD)

Original analysis function to be differentiategpé:analysi_bas f |

Original analysis data, typeoid * |

CD->anfunc (par., ..., CD->ancd) - original analysis functi(of typeanalysis bas f)

Figure 1: Calling scheme for numerical differentiation a$pense function calculated by
the analysis function.

Below the calling scheme form Figure 1 is depidted simpler form:
Calling scheme presented in short:

» anfunc_fromved..., analysis_to_vecfunc_cd CD)
o vecfuncnumgrad=P>¥eee | vecfuncnumgradcd cdvieg>veecd)

= vecfunc_froman Fedvee>veeing - analysis_to_vecfunc_cd COFe™
>veccd

« anfuncorig “eP>aMnel | void * cdorig=cP>aned

2.5.2.1 Additional functionality

The mechanism for numerical differentiation enalsi@sie additional functionality. Most of
this is enabled by the structure of the tgmalysis to_vecfunc_cd , Which is intended for

22



2. Basics IOptLib User's Manual

conversion between analysis response and vectottidun response. In order to use this
functionality, one must directly access the definitdata structure (call it CD, fsay).

For example, setting the flag CD->recordan willgs thatesults of individual analyses
will be recorded and pushed on the stack CD->anpoints as poinfetgpe analysispoint
These pointers are dynamically allocated and capdpped from the stack for further use (e.g.,
analysis results at perturbed parameters, whiclkaoelated implicitly at numerical differentiation
can be further used for forming approximated resphnRecording (i.e. transcription of analysis
response to analysis points on CD->anpoints) ifopeed byvecfunc_froman  when CD-
>recordan is non-zero.

If the caller will only need the recorded analyssmporarily to do some checks something
after calling the function, he can move them froB-€anpoints to CD->anstore. In this way, the
analysis points will be recycled (used at next gsialrecording), which will reduce the need for
dynamic allocation (since already allocated analgsints will be used to record results).

2.5.3 Extension of the numerical differentiation systenﬁQ

Most likely, intended extension of the system wiltlude addition of new methods for
numerical differentiation. For this, one will netedextend thevecfuncnumgrad  function, which
actually does the job. When extending this functectly, it would probably need new flags on
its definition data of the typeecfuncnumgradcd , which would tell the function to perform
differentiation according to the newly added meth©de should therefore extend the body of the
function and the definition of the type of its dgfion data. This is possible if one has the source
code of the appropriate modules (in this capthas.c ). However, in order to make extension
accessible to other users of the library, it shdagdouilt into the distribution that is used bygbe
users.

More elegant way is to add a completely new fumctithat would replace
vecfunchumgradcd  when a new differentiation method would be used, @ new function for
preparation of the definition data for the outersiievel analysis function. This function can be
based onprepanfuncnumgrad and can be its simple extension (e.g. it can singdll
prepanfuncnumgrad  when previously implemented method is requestedioopreparation of
definition data itself when the new method is rexjed). In the case when the newly implemented
algorithm is requested, the data preparation foncshould store address of the new function for
numerical differentiation inCD->vecfunc, its definition data inCD->veccd, and address of the
function for de-allocation of CD->veccd €D->dispveccd.

The type of CD->veccd would not necessarily veefuncnumgradcd , by which we
would avoid the necessity to extend this typehdf type would turn sufficient to carry all the data
needed for the new algorithm, we can of course kkemld type. In this case we can use other
functionality supported by this type, e.g. storiofgvector points. If we only need some minor
extension of the type (e.g. some additional flagscefficients), we can use an array of pointers of
standardized length where the first pointer pototslata of typevecfuncnumgradcd and the
rest point to additional data. Then we can stk whatever is provided by the original type. Of

23



2. Basics IOptLib User's Manual

course, we must correspondingly implement the Besation function, which is stored i€D-
>dispveccd.

When deriving a new definition data preparation cfion from the original
prepanfuncnumgrad , we must take care of what to do when the definitilata for vector
function with numerical differentiatio€D->veccd is already allocated. If the type is appropriate
(i.e. the same as will be used for our definiticatall then we can use it and only change the
contained data as necessary (e.g. the flags teatspty specify which numerical differentiation
algorithm is used). If the type of already allocktéD->veccd is not the same as the one we will
use, we must first de-allocate the old data (bypgi€£D->dispveccd) and then create CD->veccd
anew. If CD->dispcd is NULL then we don’t de-allte&D->veccd because it will be de-allocated
somewhere eldgotherwise we use this function for de-allocatiiormally, we check equivalence
of types by comparing the de-allocation function-€dispveccd to the one used for de-allocation
of our data - if they are the same then we canladecthat the types are the same, too. In this
specific case, de-allocation of eventually allodaBb->veccd can be made in any case because de-
allocation at this point does not significantly eaff the processing time and thus computational
efficiency.

2.5.3.1 Additional implementation remarks

Numerical differentiation of analysis results regsi double conversion from standard
analysis to standard vector function and back aodsrd analysis function. For both conversions,
the same data structure (calleCD in the above discussion) of the type
analysis_to_vecfunc_cd is used as definition data. These conversionsparormed by
vecfunc_froman and anfunc_fromvec , respectively (Figure 1). The implementation
remarks explaining how both conversions can useadhge structure are givenSib-sectior?.4.2.

2.6 Prevention of repeated analysis at the same pararseand
analysis counts

Some of the provided automatisms may cause the saumeerical analysis to be
successively performed several times with the saptienization parameters. This is the case fe.g.
when the implementation of optimization algorithequires separate functions for evaluation of
each type of response, but the analysis is strattirsuch a way that the most time consuming part
of calculation is the same for all types of resgonpon which calculation of individual parts of

! Such is the agreement for many structures thamopointers to another possibly dynamically adied structures.
Such a structure contains address of a functiondésallocation of the dynamically allocated struetuand if this
address is NULL then this means that the pointenamaged somewhere else (i.e. pointer on the steict not the
main handle of the data), therefore de-allocatloougl not be made. Such agreement is typical focsires that may
contain some additional data of types which are kraiwn in advance. In contrary, for container typleat are
primarily intended for carrying large amount of @gsuch as thetack type), different agreement may be used, and
some function for de-allocation of container typmay consider non-specification of function for dieeation of
individual elements just as indication that elerseate simple pointers, which can be de-allocatedhkystandard
functionfree .

24



2. Basics IOptLib User's Manual

response only requires a negligible amount extne'tiSuch redundant repetitions are undesirable
especially when the analysis is time consuming.

Such situations can be avoided bgplacing the original analysis function by the
appropriatenrapping function that records the last results and prevents regefierformance of
the analysis at the same optimization parameterssiimply returning the already calculated
responseé The function calls the original function when thealuation of response is actually
needed. Let us mention that this mechanism canb&acsed for defining the analysis function that
returns a previously stored response, which mayskéul in some cases.

The basic analysis function that prevents redundalctlation is defined inptbas.c  and
is declared as

int anfunccountnorepeat(vector param, int *calcobj, double **addrobj, int
*calcconstr, stack *addrconstr, int *calcgradobj,ve ctor
*addrgradobj, int *calcgradconstr, stack *addrgradc onstr, void
*cd[4]);
The function is of the standard analysis functigmetanalysis_bas f , except that the

type of the definition data (the last argument) is prescribed and must be an array of four
pointers. Other arguments must be the same as weypassed to the original function.

cd[0] must be the address of the original analysis fangctwhich will be called by
anfunccountnorepeat whenever necessary (i.e. when the requested respgsmot known
from one of the previous calls).

cd[1] must be the definition data for the original asay

cd[2] must be a pointer to storage of type int. If ihgg NULL then the number pointed to
by cd[2] is used as analysis counter and is incremented tgae the original analysis is called
within the function.

cd[3] must be an address of a variable of tgpalysispoint , and is used to store
analysis results. The pointer pointed to by cd[3yneither be NULL or a valid dynamically
allocated pointer of typanalysispoint . Ifitis NULL then it will be allocated internaliwithin
the function. If cd[3] is NULL then the analysis|Wbe performed properly, but the repetition
prevention mechanism will not work (i.e. it may pap that calculation with the same parameters
is performed several times successively). Normalywvarning message is launched when this
happens for the first tinle

! This is the case when, for example, all the respds based on the results of a complex numeritalysis, and

different types of response such as the objectinetfon and additional constraint functions requindy different post-

processing of the simulation results, which is mieds processing time consuming than the simulatiseif.

2 This mechanism will of course make use of the ymisldefinition data, which will for the wrappingrfction contain

the address of the original analysis function (Wwhioust be called to calculate the response) andeitiition data

(which will be passed as argument when this funcisocalled) and auxiliary data to keep track afyious calls of the
original analysis. This makes sure that the wragimction can really be used instead of the oabat any place, that
the mechanism is thread safe and that the wragpimaion may be called in nested calls.

3 This can be prevented by callisgtprintlevelanfuncnorepeat(0)

25




2. Basics IOptLib User's Manual

The function anfunccountnorepeat stores optimization parameters and results to
*(cd[4]) after each call to the original analysis€tion for calculating the response. At every,dall
first checks whether the requested response isdstior *(cd[4]), and if it is, it just copies the
response instead of actually calling the origimalgsis function (whose address is in cd[0] and its
definition data in cd[1]). Example 3 shows how s&uthe mechanism in practice.

Example 3: Use of the wrapping analysis function that presemiccessive repetition of
analysis defined bgnfunc andandata at the same parameters:

analysispoint anpt=NULL;

void *cd[4];

int ancount=0, numparam=3,calcobj=1, calcconstr=1, calcgradobj=1,
calcgradconstr=1;

double obj=NULL;

vector gradobj=NULL, param=NULL;

stack constr=NULL, gradconstr=NULL;

/* Prepare definition data for wrapping function th at will replace the
original analysis function: */
cd[0]=anfunc; /* set original analysis function */

cd[1]=andata; /* set original definition data */
cd[2]=&ancount;
cd[3]=&anpt;

param=getvector(numparam);
anfunccountnorepeatsimp(param, &calcobj, &obj, &cal cconstr, &constr,
&calcgradobj, &gradobj, &calcgradconstr, &gradconst r, cd);

optimize(...,anfunccountnorepeatsimp, cd); /* opti mization of response
defined by anfunc and andata, through wrapping anal ysis function
that prevents unnecessary repetition */

;j.i.spanalysispoint(&anpt) /* don't forget to de-a llocate the auxiliary
storage when not needed any more */

Notes:
When successively using the same storage (of tymeysispoint ) for different
analyses via definition data ahfunccountnorepeat , make sure that all calculation request

flags are set to 0 before use with a new analysis will enforce actual calculation at the firstlic
and prevent eventual use of response calculatetthéoypreviously used analysis in the case that
optimization parameters at which the previous aislyas called accidentally mach the parameters
at which the new analysis is called. Otherwise,fthmetion is thread safe and suitable for nested
calls.

A simpler variant of the function exists and is declared as

int anfunccountnorepeatsimp(vector param, int *calc obj, double **addrobj, int
*calcconstr, stack *addrconstr, int *calcgradobj, v ector
*addrgradobj, int *calcgradconstr, stack *addrgradc onstr, void
*cd[3]);

26



3. Basic Building Blocks IOptLib User's Manual

The definition data of this function is an arrayasfly three pointers because the storage
address for storing the last results is not necgsketead, the results are stored in a statiabbe.
This function is still thread safe (because lockimgised), but calling it from parallel threads may
cause inefficiency because calls from differenedldls may override the stored data (which may
also cause excessive re-allocation when respomsendions are not compatible). Because of this,
the function may in some cases not be able to cityreetect that the same analysis had been
performed by the previous call in the same thread, complete calculation will be unnecessarily
repeated. This simple variant could not be usetksted calls and would block (because of thread
locking) if we attempt to make nested calls. Nestadl would occur for example if the
anfunccountnorepeatsimp was called within the original analysis that isediswith this
function (and thus called within it).

If we don’t need to take care of successive rapastof the same analysis, we may want to
use the analysis thatst counts the number of times the analysis is péarmed. Such wrapping
analysis is declared as

int anfunccount(vector param, int *calcobj, doubftaddrobj, int *calcconstr, stack
*addrconstr, int *calcgradobj, vector *addrgradah}, *calcgradconstr, stack *addrgradconstr, void
*cd[3]);

Further explanations are not necessary becaugmihters incd have the same meaning as
with anfunccountnorepeatsimp (and the same meaning as the first three poirtethe
definition data ofinfunccountnorepeat ).

3 BAsIC BUILDING BLOCKS

This Section describes basic building blocks thatcammonly used in higher level utilities.
These are usually not the most lower level utditieowever they are not meaningful by themselves
but are used in yet higher level tools for solvisgecific problems. A typical example is
implementation of affine co-ordinate transformasiom optimization algorithms, these is used at
many places: For scaling of variables, for defamitiof trust region constraints, for deriving
multivariate weighting functions from one dimensabriorms, etc. It is possible and therefore
meaningful to build a common implementation of radfiransforms for all of these tasks in a single
library module, and this module can then be usedllagv lever tool in any of the above mentioned
higher level utilities. Still co-ordinate transfosmare not the lowest level functionality (i.e. just
above the basic language features), because thgyomea whole set of matrix and vector
operations. The task of the affine transformatiooduie is to collect all the necessary matrix
algebra functionality and pack it in such a wayt fhaan be used in a simple way without referring
to individual operations of the underlying implertagion. l.e., an affine transformation is
represented by a single structure and a corresporatdit of operations, which are in the sense of

27



3. Basic Building Blocks IOptLib User's Manual

” oW "o ” W

“define parameters of the transformation”, “tramefca vector”, “inverse transform a vector”, “set
expected number of inverse transformations”, “setraetric property of transformation matrix”,
etc. The user does not need to care which methadsfanctions are applied under given

circumstances.

3.1 Co-ordinate transformations

This topic is so common that it seems appropraxplain implementation details together
with some mathematical backgrodndHere it is necessary to accompany the text witmes
formulas in order to put things precisely. Matheoatterminology in this area completely clear
but since use of programming constructs (such ragtated type) is often extended beyond its
primary scope, one must make clear what is what.

When prescribing some function rule, we deal widtters of co-ordinates that uniquely
define points as elements in the function definitomain, which is a subset of a vector space
Stating point co-ordinates is just a way of labglpoints in vector spaces, but this way is not
unique. We can always introduce another indexingtesy by transforming co-ordinates of the
space. Co-ordinates of a point in the transformedrdinate system are expressed as function of
original co-ordinates, e.g.

X=F(x), (4)

where F should be a continuous one-to-one (bijertimap. Tricky point with co-ordinate
transforms is that one must know precisely in whiokordinate system scalar or vector fields are
specified. This will in general differ from case ¢ase and one of the goals of this Section is to
make these things absolutely clear.

Where functions are defined depends on the purpiose-ordinate transforms. One possible
purpose is to enable general use of a simple fomatepresentation. For example, weighting
functions used in moving least squares are in géfenctions of difference between the point of
evaluation and the sampling point that correspdnds weighting function (see e.§ub-section
5.4.2). In most cases, desirable form of weighfurgctions allows us to introduce new variables in
such a way that expressed in new co-ordinates, htie@ functions are just functions of the
distance between the point of evaluation and sampling psae equations (26) and (27)). This is
very useful because for the definition of actualgliéng functions, we only need to definecalar
function of vector variable (not a vector variable) andapaeters of transform (such Asands

! Usual practice of the library manuals is to elai®rspecialized topics in separate documentatidle wis library is
intended to cover only the basic framework. Howewerthe case of linear transforms it is extremiefportant to
harmonize notation in such a way that the uselnays precisely aware of the meaning of individgahntities. This is
best achievable without a short mathematical detani of the topic with analogous notation usedhate code.

2 Although in some literature there are differenizesise of terms (in particular in engineering bgoksg. the term
“linear functions” is often used for something wisbtherways called “affine functions”.

® This discussion is limited to real spaces and teakco-ordinates.

28




3. Basic Building Blocks IOptLib User's Manual

from (27)). This enables much simpler testing dfedent forms of weighting functions because
replacement of definitions is performed on the leviere it is much simpler. Moreover, we can
use the same function definition (together withdigdinition data) for all sampling points while we
have different transform parameters (suck asdA) belonging to different sampling points, which
is more meaningful. In this case, definition of dtians is bound to transformed co-ordinates while
final evaluation (values and gradients) is perfatroe original co-ordinates, and primary role of
co-ordinate transform is in fact function compasiti

A different situation occurs when we transform dasparameters in order to perform
optimization on transformed parameters (e.g to renBatter scaling in the first place, or to enforce
bund constraints by sigmoidal parameter transfaringhis case, response function (and eventually
their gradients) are defined in the original colsate system, while solution procedures will be
performed in the transformed co-ordinates. Moreopakgyorithm parameters such as starting guess
(and possibly tolerances) are also defined in wailgto-ordinates. In order to solve the problem, we
must transform definition of response surface, rttggiadients and algorithm parameters to
transformed co-ordinates. When results are obtaitthey must be transformed to the original co-
ordinate system to be readable by the user.

3.1.1 Linear transformation of co-ordinates

Let us denote by and X co-ordinates of the same point (or vector) wriftetwo different

co-ordinate systenis and K, respectively. Co-ordinates of a vector in a gigerordinate system
are coefficients of linear combination of basistees that equals this vector. We will denbssis

vectors of K byey, ..., & and basis vectors & by &, ..., € . Then we have

X €=X§, (5)
where we expressed the same point as linear cotidrinaf the two sets of basis vectors. Co-

ordinates of a point in a new co-ordinate systeenabtained from original co-ordinates by the
following linear transformation:

X=Ax=A"x (6)

or X =a X, . Inverse transformation matriA transforms co-ordinates iK to co-
ordinates irkK:

()

x
1

b1

>t

! We use Einstein’s summation agreement: if an imégeats in the same side of equation then thissngammation
over that index, e.ga X, =) &, X

29



3. Basic Building Blocks IOptLib User's Manual

Columns of inverse transformation matrix A= A are co-ordinates of basis vectors of new
co-ordinate system E expressed in the original systén

€=4ae, . (8)

To check the above formula, we input (8) into (%€ =X a e, =xeg, (where we have

summation over andj according to the summation agreement). Sma@e linearly independent
basis vectors, coefficients of their linear comhimas are unique and we can equate coefficients of

the same vectors, which giveg =a,X or x =AX. Since both setsef} and {&} are bases of
vector spacdR", A is a full ranknxn matrix.

If both K and K are Cartesian co-ordinate systems with orthogonal and normalized basis
vectors therA™ and henceé\ areorthogonal matrices,

AA" =|. 9)

This also means that scalar products of any twtindiscolumns (or rows) oA is 0 and scalar
product of any row (or column) by itself i$: 1

& & :5” v 8 =0, (10)

bi=j : ,
where g, :{O'i ij, is the Kronecker symbol. In this case, rows Afare co-ordinates of

corresponding basis vectogs of K in K (since they correspond to columnsaf= A™). Because

in Cartesian systems co-ordinates are scalar pt®difcvector with corresponding basic vectors
(ie. € =(2le )e,), we have

a, = [&, (Cartesian systems). (11)

This can be verified as followsce =X, & =X ((& 2, )e,), after equating coefficients gtwe have

x=%(8e)=(e(8)x, therefore & =(e(&)=a, (because A=A7=A") and finally

3, =¢l®.

Transformation of linear operators:

! This must be true because of the fact that coluaind ™ correspond to co-ordinates of the basis vectorthef
second co-ordinate system in the original (cartgssgstem, and since basis vectors of both syséeenerthogonal and
of unit length, the above formula must be valid.

30



3. Basic Building Blocks IOptLib User's Manual

In a given co-ordinate system, a linear operatoefsesented by a matrix by which column
of co-ordinates of original are multiplied in orderobtained co-ordinates of its image:

w=Tu . (12)

We are looking for matrix representation of the salinear operator in the co-ordinate
systemK if co-ordinates are transformed according to \(8¢ must satisfy

W=Tu or Aw=T (Au).
We havew = AT Au and thus from (12A*T A =T, and finally

T=ATA™® (13)

3.1.2 Linear (Affine) maps, eigendecomposition and quadtgc forms

The most general co-ordinate transformation dismlisgn this Section is Affine
transformation, expressed as

X=A(x-s), (14)

where A is an arbitrary squarexn) matrix. Without additive term s- this would be a linear
transformation. IfA has full rank, this is a non-degenerate co-ordinmansformation, i.e.
transformation is bijective and the dimension o tiew co-ordinate system is the same as the
dimension of the old one. In this case, there sxisterse ofA, and we can express original co-
ordinatesx with transformed co-ordinates.

Of particular importance are cases where the raalsformation matriXA is symmetric.
Real symmetric matrices have exaatlyeigenvalues (not necessarily unique) and corraipgn
orthogonal eigenvectors, which satisfy the equation

AX,, = A Xa 1 =10, (15)

Eigenvalues/,, are solutions of the characteristic equatdtm(A -Al ): 0 Two eigenvectors that

correspond to different eigenvalues are alwaysoguhal (xiTxJ. =00i # jOA # A,). Multiple

eigenvalues with multiplicity are multiple zeros of characteristic equation$witorresponding
linearly independent eigenvectors. Any non-triiaear combination of these vectors is also an
eigenvector with the same eigenvalue, and they lmarorthogonalized to obtaip orthogonal
vectors.

31



3. Basic Building Blocks IOptLib User's Manual

Every symmetric real matri& can be written as
A=U,D,U," (16)
whereD, is a diagonal matrix whose diagonal elements ayengalues ofA and U, is
orthogonal matrix* whose columns are the corresponding eigenvecfoké.drhe above formula is

therefore called eigendecomposition (or spectrabdgosition) ofA.

Matrix A is transformed to diagonal forbBh by the so-calledransform of the main axes,
D, =U'AU. a7

This represent transformation into a new Cartes@ordinate system whose basic vectors
are eigenvectors .

A gquadratic formis a function of the form

n

QX)=x"Qx=Y>Q, % x, (18)

n
i=1 j=1

whereQ?® is a real symmetric matrix. D is positive definite then it can be written as square of
another symmetric matrix:

Q=A’=AA. (19)

We can perform such linear transformation of corates thafQ is expressed as a sum of
pure squares in the new co-ordinate system,

QR)=X'KX=2kX". (20)

This is performed by transformation mattidoDok WhereUqg is the matrix whose columns are
normalized eigenvectors Qf andDqk is a diagonal matrix with elements

1 A real matrixU is orthogonal whety=U". This means tha?U'=U"U=l, i.e. scalar product of two distinct columns
(or rows) are 0 and scalar products of any rowoturan with itself is 1.

2 Transformation of the formA =G AG whereG is an invertible matrix is calledimilarity transform. This

transform preserves eigenvalues, i&. and A have the same eigenvalues.@& is orthogonal then the similarity
transform is callecongruent transform. Beside eigenvalues, this transform also presesyesmetry of the matrix (if

A is symmetric therA is also symmetric).

3 If the form Q&)>0 for allx then the form is said to l@sitive definite (and so is the matri®), if it is less than 0 for
all x it is callednegative definite, and if it is greater or equal to O it is calleakitive semi-definite. Necessary condition
for positive definiteness is that all diagonal edets of Q are positive. Positive definite matrices have i

eigenvalues.

32



3. Basic Building Blocks IOptLib User's Manual

ki
Ooy: = TQ. , (22)
therefore
x=U,Dg X,
X=D, U, x . (22)
K :DQKT UQT QU,Dy

We see that coefficientk; can not be just arbitrary, but must have the saiga as the
corresponding eigenvalues @f (otherwise there was a negative value under tharsgoot). If we
setDqk=I then coefficients in (21) are eigenvaluesQdfi.e. k =A,, or K=Dq. If Q is positive

definite then we can perform such linear co-ordinaansformation thaQ(>?):|b<||2 by setting

A =Yg -

3.1.2.1 Calculation of gradients

We want to calculate a gradient of a scalar fumctioat is defined on transformed co-
ordinates. Note again thadt= A(x -s), x =A™% +s.

If we have a functioig defined on transformed co-ordinates and a fundtisach that
h(x)=g(%)=g(A(x-s)), (23)
then gradient ofi is
0, h(x)=0,9(A(x-s))=A"Og(A(x-s)). (24)
For composition of functions, gradient is
D f(glx)) = f(g(x)) Dglx). (25)
If we have, for example
w(x)= (A (x-s)) (26)

then

33



3. Basic Building Blocks IOptLib User's Manual

Ow(x)=0, 1(Ja Kx-s) )= F(Ja(x-s)]) A" f\gxx_'ss)) (27)
becaused, | x | = x/|x|. We can simplify the equation:
wa(x):f'(||>~<||)ATi; x=A(x-s) (28)

%]

3.1.3 Agreements for use of linear (affine) maps

Remark: an old version of this chapter has been savedeirsandbox in Section 12.1.1.

In the 10ptLib, linear (in fact affine) transforrase used for several purposes which include:
» sampling of response functions in a given domaihjciv can be obtained by
transforming a unit ball
+ definition of a restricted region constraint, whéte constraint function that ensures
that the solution is included in the unit ball ibfected to co-ordinate transform
« definition of weighting functions, which are obtathby co-ordinate transforms of
rotationally symmetric functions scaled for a uratl

The above mentioned functions and procedures arentist easily defined and performed
when the unit ball centered in the co-ordinate iorig the domain of interest. We define the
transformF such that

X=F(X)=AX+s, (29)
or
X=F*(x)=A™(x-s). (30)

Affine transformF transforms a unit ball centered in the co-ordinatigin to an hyper
ellipsoidal region with a center of mas@igure 2). In optimization methods that utilizecsessive
approximations of the response, such domains areeoiently used for sampling of the response
and as restricted region on which the approximatexblem is solved in the current iteration,
therefore also the sampling weights are defineduich a way that influence of samples on the
approximation is significant in the domain of trere shape, centered around the corresponding
samples.

The (closed) unit ball is defined as

34



3. Basic Building Blocks IOptLib User's Manual

u={x:|x],=1}. (31)
The ellipsoidal domain obtained by transformatibthe unit ball byF is therefore

Ue ={ x| F (%) =1} (32)

Figure 2: Affine functionF that maps n unit ball into an ellipsoidal domagémtered around
s.

Sampling is typically done such a way that the specifiechharms of random points with
uniform probability density over volume of the ubdll are generated, s&y. These points are then

transformed tx; by

X, =F(x). (33)
In most cases it is more convenient that the samggibints are uniformly distributed over
volume in the unit ball rather than the transformeéighsoidal domain, which can be very elongated.
This is even more obvious when we obtain the sasripjesolution of the minimal particle potential
problent. If the minimal potential problem was used on ¢higsoidal domain that is expressively
elongated along one main axis, we would obtain atno@iform distribution along this main axis
and a meaningless zigzagging in other directionkeVwe want to include previously chosen

! This ensures that the particles are as far away frach other as possible and they are not comatedtin any part of
the sampling domains, which can happen by randonplsag.

35




3. Basic Building Blocks IOptLib User's Manual

sampling pointsyy in the minimal particle potential problem (in orde avoid oversampling of
parts of the domain), these points are first tramséd by inverse transforms into

e =F(yi)- (34)

Then the necessary numlrerof %X, are obtained from randomly distributed pointshie t

unit ball (say>“<i(°)) from solving the minimal particle potential prebi involving also the points
¥.. PointsX; are then transformed by F.

Restricted region constraints are defined by transforming independent varialbés

constraint function that correspond to limiting tdemain to the unit ball. For optimization
purposes, the unit ball constraint is conveniedéfined as

T =) %],” <1. (35)

2

The corresponding constraint function is
o (%) =]%],” -1=x"%-1. (36)

If we want to limit the domain of optimization tbe ellipsoidal region obtained from the
unit ball byF, we must applyg, to variables transformed by ™ because this function transforms

the domain of interest to the unit ball (Figure ®erefore, the constraint function correspondimng t
the restricted region constraint is

¢ (x)=¢g (F’l(x)). (37)

According to (28) and taking into account (36) &8d), gradient of; is:

P R=AT(x -x;) . (38)

Because sampling is performed inside the ellipsadeain obtained by application Bfto
the unit ball, it seems reasonable that contoumsedfhting functions corresponding to individual
samples will have similar shapes as this domaimn,will be centered around the corresponding
samples. Therefore we can use a similar idea faghtiag functions as for the restricted region

constraint function. We define a template weightfogction w,, (S() with concentric contours,
which decays considerably on the distance 1 froenattigin. Actual weighting functions are then
obtained by applying the template weighting funetio co-ordinates transformed I5y™*, whereF;

is a function that transforms the unit ball to alipsoidal domain centered around the
corresponding sampling point. For sampling pajrthe corresponding function is

36



3. Basic Building Blocks IOptLib User's Manual

F(X)=A X+X,. (39)
The weighting function corresponding to the sampis then
w (x) =w, (F*(x))- (40)

Because the template weighting function has conicestintours, it can be defined by a function of
a single variablev(x), i.e.

w, (%) =w( %], ), (41)
The weighting function corresponding to the sampfinintx; is therefore

w (x) :W(" F™(x) ||2) :W(A'l(x—ri)). (42)

Functionw needs to be defined only for non-negative argumafe usually require that gradient
of w, is continuous in the co-ordinate origin, which meshatw must have a zero derivative in 0.

Commonly used forms faw are Gaussian and reciprocal polynomial (Figure 3):

1 p=2,34 (43)

1+[r|”

37



3. Basic Building Blocks IOptLib User's Manual

Figure 3: Weighting functions of Gaussian fomwg(r) and reciprocal polynomial form
wy(r).

According to (28) and taking into account (42) geat of the weighting functions are:
0 () =w([], ) AT x=Ax=x) (44)
(I.) Ix1,

3.1.4 Implementation of linear and affine maps@

3.1.4.1 Transformation type

Several rules for handling affine (or linear) magsl transformations are implied by the
transformation data type and the associated fumetidfhese rules must be followed when
implementing lower level function that operate withis data type. The present Sub-section
describes the transform types and defines some hdse.

The user usually uses high level functions anchis way he or she does not interact too
much with the basic rules. Most of the users caneflore read only the first part of this sectiod an
then skip to the Section 3.1.4.2, which describles higher leveluse of linear and affine
transformations.

The transform data type is defined as

typedef struct _lintransfdata {
int type,id; /* type and unique object ID */

int lock; /* object locking support (to synchro nize access in threads) */

/* Dimensions of the first and the second space, i.e. of inverse

transformation matrix Ainv: */

int d1,d2;

vector shift; /* translation vector */

double *a_scal; /* multiplicative factor for tra nsf. matrix */

vector a; /* components od diagonal transformat ion matrix in the
domain of transformation (there is no such th ing in codomain of
transformation). If (...)->A is also defined then diag(a) is left
multiplied when performing transformation. */

vector ainv; /* Inverse of a (components are rec iprocal comp. of a) */

matrix A; /* transformation matrix */

unsigned long A_flags; /* flags describing prop erties of A */

* Spectral decomposition: */

vector A_sd; /* components are eigenvalues of a */

matrix A_sU; /* columns are eigenvectors of A */
/* QR decomposition: */
matrix A_Q; /* orthogonal factor of QR decompos ition of A */

38



3. Basic Building Blocks IOptLib User's Manual

matrix A_R; /* upper triangular factor of A */
/* LDLT and UL decomposition: */

matrix A_L; /* lower triangular factor in LDLT decomp. */
matrix A_U; /* upper triangular matrix in LU de comp. */
vector A_D; /* diagonal factor in LDLT decomp. */

/* Inverse of A: */
matrix Ainv;

matrix Q; /* coefficients of quadratic form */

vector g; /* coefficients of pure quadratic for m (Q diagonal) */
vector dQ; /* coefficients are eigenvalues of Q */

matrix UQ; /* columns are eigenvectors of Q */

* Function definition that enables direct use fo transform for
composition of functions: (consider whether this is a good solution; maybe
the opposite approach would be better - standardi ze the form of the
definition data for functions such that they incl ude the lintear
transformation structure) */

int functype;

void *func;

void *funcdata;

void (*dispfuncdata) (void **);

double *val; /* used when func==NULL */
vector gradval; /* used when func==NULL */

/* Auxiliary vectors & matrixes: */
vector
vecauxl, /*dim. (...)->d1*/
vecaux2, /*dim. (...)->d2*/
vecauxinvl,
vecauxinv2;
matrix
matauxl,
mataux2,
matauxinvl,
matauxinv2;
/* Auxiliary storage of matrices & vectors: */
stack matstore;
stack vecstore;
} *lintransfdata;

The usual rule applies that everything what is loa structure should be dynamically de-
allocated together with it (when de-allocationadled, see Section 3.1.4.2), except for the fiébds
which de-allocation functions are explicitly spésif (in this case, a corresponding NULL de-
allocation function means that the correspondingtpowill be de-allocated elsewhere).

The structure holds all the data that is directiyitid to the maps (divided tfinition and
derived data) as well as auxiliary storage data for functidmat tuse the structure. Fderived data
that is bound to parameter transform (such as factf various decompositions of the
transformation matrix), there is a rule that ifgaalata are allocated then they must also be tigrrec
calculated according to the current definition d&tdnenever definition of the map is changed, any
allocated derived data must be either re-calculatatk-allocated. In order to safely imply thisequl

39




3. Basic Building Blocks IOptLib User's Manual

only the set of functions that are provided by thedule should be used. If new functionality is
required, then it should be implemented by usirgyftinction from the module or new functions
should be implemented within the module that dyriictilow the rules.

Some derived quantities (such as factors of decsitipos) may be calculated
automatically when needed within functions thatrafgewith the map.

The affine map that is represented by the datatsirel specified above is
y(le) = A(mxn) X(nxl) +b(mx]) ' (45)
Dimensions are contained in the following fieldgtod transformation data structure:

d1=n=A->d2
d2=m=A->d1

Definition data:

Fields shift , a scal , A and a are considered basic definition fields of the
transformation.
However,A or a may be replaced by its decomposed form (e.g. faétoQandA_R), anda_inv
of A_inv may define the inverse &f instead ofA itself. These are all legal situations that muest b
gandled by the function working with transformason

Basic definition fields defins (=shift ) and thetransformation matrix A from equation
(14). The following rule for definition oA is used:

A=A"(a_scal |1)=(A|l) (diagd)|l) (@_scal |1). (46)

This means that any of the fact@sscal , a andA can be defined or not and if they are
not defined then the corresponding unity for miitgtion is taken instead. Thieansformation
matrix is defined as product of all these factors. limiportant that the eventual diagonal factor
diag@) (when defined) is right-multiplied with the matfactorA, which means that when a map is
applied to a vector, it is first multiplied by thdéagonal factor.

The scalar factor provides the possibility of ispic scaling apart from multiplication
which can be useful e.g. in restricted step algorét. The diagonal term allows scaling of each
component separately, but in the domain of the (napin co-domain). This can be useful if we
deal with very badly scaled physical quantities.(humbers corresponding to different quantities
are several orders of magnitude different) andirsgais used as a tool for pre-conditioning
numerical operations that are performed on thesatidies. Another benefit of usirayis boosting
efficiency when the transformation matrix is aclpaliagonal (in this we don't defind, and
because of this all matrix computations actuallydaay).

Of course, actual computations are performed incgenefficient way than it could be
concluded from (46). If some factor of this equatie not defined (i.e. it is considered unit for
multiplication in the equation) then the correspagdnultiplication is skipped.

40



3. Basic Building Blocks IOptLib User's Manual

It is important to remember tHat
A=cA 47
where

c=(a_scal |1) (48)

Derived data: (to be supplementel@

Ainv holds inverse ofA’ (i.e. not of actualA , but of A divided byc , which is a
multiplicative factor that is defined by the fieédd scal or is 1 when this field is NULL). 1A’
(and thusA) is diagonal (which is whea is specified) then inverse 8f is not kept andiinv  will
be NULL (because it is very simply calculated).

Field UAholds an orthogonal matrix whose columns are nlizetheigenvectors o’ (Ua
in equation (16)) and dA holds a vector of corregfiog eigenvalues &’ ((1/c)Da). Again, ifA’
is diagonal & is specified) then fields UA and dA will be NUL&ince in this casga=I and
Da=diag@).

Auxiliary data:

Auxiliary matrices and vectors are used in ordegsaee time for allocation and de-allocation
on account of additional space that remains aldmtantil it is released (explicitly or implicitlg.g.
when the transformation matrix is de-allocated). &mample, when a vector is transformed, it can
be multiplied by a matrix that can consist of salefactors (equation (46)). Successive
multiplications can yield vectors of different lehg, which can not be stored at one location.
Therefore, when necessary, the auxiliary matricesvactors are used for storing immediate results
of operations.

Auxiliary matrices and vectors are normally usetly doy lower level operations and users
of the library will not have to deal with them. Thale is that auxiliary matrices or vectors are
allocated the first time they are needed. Theythan be de-allocated explicitly or implicitly when
the whole transformation data structure is de-atied. Programmers of lower level functions that
use auxiliary matrices and vectors must be veryefabrabout the dimensions. Objects of
appropriate dimensions must be used (this is nassare when the domain and co-domain of the
map have the same dimensions), otherwise the ragesssizing would annihilate the benefits
gained by using these objects. When used in fumgtitealing with the transformation, dimensions
must be checked because it is not guaranteedhbgivtill match (i.e. when the transformation is
re-defined in such a way that dimensions of thesficrmation matrix change, it is not guaranteed

1 A question is “Why to specify a separate scalmgidr while it could be included i in which case special treatment
of A’ is not necessary?” Well, it is always possiblé twodefine the fielda_scal , in which case the two matrices are
equal. Reason for introducing an optional scaliagtdr is that derived data can be re-used wherréimsformation
matrix is only scaled, which is often beneficialcB treatment causes some negligible computationaihead (e.g.
checking whether additional scaling factor is defip There is also some implementation overheatthizishould not
be a problem because all the basic tools neededatalle transformations are already there and imgeed
consistently.

41



3. Basic Building Blocks IOptLib User's Manual

that previously allocated auxiliary matrices andtoes are resized or de-allocated). Table 2 lists
dimensions of the auxiliary matrices and vectors.

Table 2: Auxiliary storage with dimensions. Note that vestthat do not have the suffirv
are defined in the domain of the map and have diinal1, and those with suffix inv are
defined in its codomain and have dimengi@n Matrices that do not have the sufiinv act on
(can be left multiplied with) vectors in the domaiithe map and thus have dimensid@sdl
(the same as the transformation ma#jxand matrices with suffixav have dimensions
di*d2 .

Field | Dimensions |  Remarks
Auxiliary vectors and matrices
vecauxl dl
vecaux?2 dl
vecauxinvl dz2
vecauxinv2 dz2
mataux1 12*d1
mataux2 d2*d1
matauxinvl dl1*d2
matauxinv2 d1*d2

For other temporary storage, there are stacks tficeamatstore and stack of vectors
vecstore . Matrices and vectors for temporary auxiliary ag@ should be popped from these
stacks and pushed back to them when not needednang. Derived matrices and vectors are
typically stored in these stacks.

Lock:

Field lock is intended for locking the object in order toymet other threads to use it.
Functions that use the data on the object (eitberdading or modification) should lock it, but
should also instruct the called lower level utiliynctions not to lock the object themselves by the
appropriate argument, or call function version ttatnot perform locking After locking, the
object must always be unlocked ($aé-sectior?.1.3)..

Table 3: Fields of thd i nt r ansf dat a type.

Field | Meaning Remarks

! Usually, utility functions that deal with objecté type lintransfdata have an extra argument that indicates
whether the object should be locked before acaeits tlata or not. Some functions can not haveedkis argument
because the function form is prescribed. In sudegathere are usually two versions of a functiore that performs
locking and one that does not.

42



3. Basic Building Blocks IOptLib User's Manual

Definition data

a_scal c, eq. (47) c=1if NULL

a A’=A diag(a)

A A’ if a==NULL If al=NULL, a is used
Derived data

Ainv Al=cAt

UA Ua = U (16)

dA (1/c) Da =Da-=diag@dA) (16)

3.1.4.2 Management utilities

This section describes allocation and de-allocatibtransformation objects, definition of
the transformation parameters, enforcement of tmtion of auxiliary data such as inverse
transformation matrix or factors of decomposeddfamation matrix, etc.

3.1.4.3 Mathematical operations

43



3. Basic Building Blocks IOptLib User's Manual

3.1.5 Restricted step constraints

3.1.5.1 Introduction

We will try to express the restricted region coaisits in such a way that in some other co-
ordinates it is reduced to the unit ball constréT). With other words,

c(x)=c,(F(x))=[F(x)I,’-1=0. (49)

Here F represents a co-ordinate transformation, in p#eicwe are interested in Affine
transformations of the form (14)

X=F(x)=A(x-s) (50)
with inverse transformation
x=F*(X)=A*(X)+s. (51)
The feasible region constraint is then
|A(r-s)],?=<1 (52)
Feasible region of the constraint (49) wilof the form (14) is shown in Figure 4. In the

transformed co-ordinates, the constraint transfotmsunit ball constraint. Therefords must
transform the feasible region to unit ball, &ititransforms an unit ball to the feasible region.

y

X

Figure 4: Feasible region of the restricted step constraintise original (left-hand side) and
transformed (right-hand side) co-ordinate system.

44



3. Basic Building Blocks IOptLib User's Manual

Some examples of definition of the feasible region:

Now let us say that the restricted region (i.esitda region of the restricted step constraint)
is a circular region with radiuscentered around If we wantF to transform the restricted region
to the unit ball ther\ must be of the form

A==1. (53)

If the restricted region is ellipsoid with main axearallel to the co-ordinate axis and with
half-axes{r, , ,...,r.} thenA has the form

R 0
dl
11 17 |o 2 0
A=diag| =, —,..— | = d 54
%dl% %} d, (54)
o .. 0
- dn .

Further, let us say th& is asymmetric positive definite matrix and restricted region is
defined as a set of point for which a quadratierfaf the form (18), but centered &is less of
equal to 1:

Qx-s)=(x-5)"Qx-s)<1 (55)
If we write Q=A"A then we have
Q(x-s)=(A(x-s)"Alx-s)=|A(x-s)|,? <1,

which is precisely (52). Sind® is symmetric and positive definitd, is also symmetric, therefore
constraint (55) corresponds to the constraint (62)

Q=A’ (56)

Form (55) may be very useful since the constraifiound to the value of quadratic form,
which may be e.g. the quadratic term of a quadegifiroximation of some function and to which it
is sensible to tie the restricted step constrabviQusly, a problem appears whénis not positive
definite, since in this case the feasible domaietstes infinitely long in some cases. What we will
usually do is to make eigentransform@fchange the sign of eventual negative eigenvalndsset
a lower bound for small eigenvalues. In this wagea Q is performed that is positive definite and
has eigenvalues bounded below. It may be senslexample, to accept the smaller eigenvalues
as a given portion of the maximal eigenvalue. Ifapgeters are very badly scaled then we might

45



3. Basic Building Blocks IOptLib User's Manual

perform pre-scaling. This will enable more sensi#¢éermination of the largest (by absolute value)
eigenvalues

©

3.1.5.2 Implementation @

3.1.5.3 Unit ball constraint

A special case of the restricted region constrigirthe unit ball constraint. This constraint
requires that parameter vector must be contained &ero centered unit ball, i.#r Hsl or
formally,

! The ratio between individual eigenvalues of resgoHessians will change over the design spacehybhad scaling
we can promote expressive dominance of eigenvaltesse eigenvectors are parallel to over-scaled rdmate
directions.

46



4. Modification and transformation of optimizatiproblems IOptLib User's Manual

c(r)=c(r)=|r|-1=0. (57)

This constraint is implemented by the analysis fiemcunitballconstr , which defines
a single constraint and no objective functions.

3.1.6 Restricted region constraints - old implementation

The domain constraint is implemented by the folloyvanalysis function:

int restrictedstepconstr_ol f (vector param,int *calcobj,double **addrobj,
int *calcconstr,stack *addrconstr,
int *calcgradobj,vector *addrgradobj,
int *calcgradconstr,stack *addrgradconstr,void **cd);

The function is of a standard type for analysiscfiom, i.e.analysis bas f . Parametecd is
a pointer to the data that contains the paramegdising the restricted region. It must be a taifle
at least 5 pointers with the following meaning:

cd[0]: s (typevector)

cd[1]: r (typedouble *)

cd[2]: d (typevector)

cd[3]: A

cd[3]: Flags (typent *), default 0.

4 M ODIFICATION AND TRANSFORMATION OF
OPTIMIZATION PROBLEMS

This section describes utilities for setting upiwniébn of an optimization problem by
modification, combination or both of one or severtiler definitions. It is understood that definitio
of an optimization problem consists of definitiohits objective and constraint problems, which is
in the IOptLib done by defining a standard analyfsisction and eventually its definition data
(Section 2.3.1).

In IOptLib, tools for several common ways of defimm of optimization problems by
combination and modification of other definitione amplemented. This is of particular importance
for construction of complex approximation basedadtgms on which much focus of the library is
put in its initial stage of development, howevedsialso very useful for construction of other skes
of algorithms such as penalty algorithms, all kimdisestricted step algorithms, and several other
algorithms such as the NLP Simplex algorimm

a7



4. Modification and transformation of optimizatiproblems IOptLib User's Manual

4.1 Combining objectives and constraints defined byfelient
analysis functions

The following function calculates response funcsi@s combination of response functions
defined by several analysis functions and theia:dat

int conbi nedanal ysi s (vector param,int *calcobj,double **addrobj, int
*calcconstr,stack *addrconstr, int *calcgradobj,vec tor *addrgradobj,
int *calcgradconstr,stack *addrgradconstr, stack cd );

The function is of standard analysis function typebas_f , only that the last argument is a
stack containing definitions of individual analysied the corresponding parametric data. This
mechanism enables defining new problem on the ldssémpler problem, e.g. one can combine
the objective function one problem, defined byaitslysis function and data, with the constraints of
another problem.

Elements of the stackd are pointers to data structures, which are of gfeembstruct

defines as follows:
typedef struct _ancomb {

int type,id;  /* type and unique object ID * /
int flags; /* flags defining how response functions are combined */
double factor,
shift, /* shift and scaling factor of values */
constrfactor, /* weight. factor for constrai nts (if 0 then factor is
taken) */

constrshift; /* shift for constraint functi ons */
int nparam,nobj,nconstr;
analysis point anpt; /* storage of analysis results */

analysis_bas_f anfunc; /* analysis function */
void *andata; /* analysis definition data */
vector auxvec; /* auxiliary vector */

} *ancomb;

There are tools for creating the definition dateg@anentcd) for the combined analysis
functioncombinedanalysis ) and are described in ti&bsectiort.1.1.1 below.

Field flags is an or-ed combination of individual basic flagat define how the response
of an individual analysis is combined to form theexall response. The basic flags are also defined

as macros inptbas.h
ANCOMB_SUMOBJ objective function of this analysis, shifteddyft and then multiplied biactor, is
summed to the objective function of the combinealysis (formed anew if necessary)
ANCOMB_SUMCONSHRonstraint functions of this analysis, shiftedcbgstrshift and then multiplied by
congtfractor, are summed to all constraints of the combinedyaisa(formed anew if necessary)
ANCOMB_SUMOBJTOCONSTBbjective function, shifted bghift and then multiplied bfactor, is
summed to all constraint functions of the combiagelysis

48



4. Modification and transformation of optimizatiproblems IOptLib User's Manual

ANCOMB_SUMCONSTRTOGHBdbnstraint functions of this analysis, shiftedcbgstrshift and then
multiplied byconstrfactor, are summed to the objective function of the carabianalysis (formed
anew if necessary)

ANCOMB_ADDCONSHRonstraint functions of this analysis, shiftedcbgstrshift and then multiplied by
constrfactor, are added as new constraints to the combinegsisgéformed anew if necessary)

ANCOMB_ADDOBJTOCONST®#bjective function of this analysis, shifteddhft and then multiplied by
factor, is added as a constraint function to the respohtiee combined analysis.

The following is not implemented yet:
ANCOMB_PENALTYSQRNot implemented yet. Expected behavior: A square function of
constraint functions of this analysis, multipliegifactor and shrinked by shift (such that shift equals
1) are added to the objective function of the coradianalysis.

shifted byshift, are added up to the corresponding constrairttseofombined analysis, e.g. (formed anew
if necessary)

ANCOMB_PENALTYSQRHALF — Not implemented yet.

ANCOMB_SUMPENALTYADAPT - Not implemented yet.

ANCOMB_SUMPENALTYEXP - Not implemented yet.

Combination of response functions is an importaetimanism, used e.g. in the following
situations:

* To add constraints which restrict the step siz¢hinrestricted step method, when
solving the restricted approximate sub-problem

» To make a weighted sum of objectives

 To form constraints from the objectives, e.g. ire tminimal potential energy
problem of charged particles, we can specify thatdomain constraint is defined by
some specific contour of the Rosenbrock problem.

The combinedanalysis function first runs all individual analyses andecks the
corresponding flags in order to calculate the numifeconstraints and whether the objective
function is defined or not. This is then used ia #ilocation of space for the result of the comtbine
analysis, which is performed by the prepanfuncbastfon Sub-sectior?.3.2).

Finally the results of individual analyses are comet in order to calculate the results of the
overall combined analysis. First, the objectivection and its gradient (if applicable according to
whether the combined objective function is defirmdl according to the flags) are initialized to
zero. Next, all results (either from objectivesconstraints) of individual analyses are picked that
define the constraints of the combined problem, staled at appropriate locations. Finally, the
values that should be summed to constraint or Ghgdunctions are picked and added to the
current values.

Remarks

The mechanism of combination of analyses is implgetein a very general way. Usually
only simple combinations will be used, e.g. combora of response defined by one analysis
function with constraints defined by another ongiftal example for this is addition of restricted
region constraints to the approximated analysi$le Purpose of generality is to implement all
possible combinations once for always and in oaeglin order to reduce complexity for users of
the library. The price paid for that is complex iempentation and an inevitable fact that some
uncommon combinations will not be tested for a ltinge. This makes the possibility of hidden

49



4. Modification and transformation of optimizatiproblems IOptLib User's Manual

errors high. When using uncommon combinations, sgletest the functionality of combined
analysis before using it, and in the case of disoed errors inform the developers of the library.
Operation of theanalysis combination system can be tesiedadvance by thé est anconb
function. One should see the source code of thetiumfor details.

Addition of penalty terms in place of constraintss not yet implemented, therefore the flags
ANCOMB_PENALTYSQR, ANCOMB_PENALTYSQRHALF, ANCOMB_PRALTYADAPT,
and ANCOMB_PENALTYEXP may not be usell.is not yet decided whether the addition of
penalty terms will be supported by the mechanism dombining analyses or notCurrently it is
still possible that this will be handled by a sgp@mechanism.

For individual analysis, it isllegal to set the flags that would imply calculation of given
response functions of that analysisf these functions are not defined. For example, if the objective
function is not defined for a given individual aysik, the flags ANCOMB_SUMOBJ,
ANCOMB_SUMOBJTOCONSTR, and ANCOMB_ADDOBJTOCONSTR ymzot be set for this
analysis.

A specific response of an individual analysis camenmore than one role. For example, an
objective function can be added to the objectivection of the combined response and ad the same
time represent a constraint in the combined respoAdthough admissible, such use is not
encouraged. If we really need such combined regpdhss advisable to include that particular
analysis twice, each time by defining another folethe objective function of the response. When
doing this, one must take care about specifyingthdrethe analysis definition data is de-allocated
together with the stack defining the combined distarder to de-allocate the same definition data
only once.

4.1.1.1 Preparation of the combined analysié@

stack combcd=NULL;
addancomb(&combcd,...)

De-allocation of the stack:

dispstackallspec(&combst,(void (*) (void **)) dispa ncomb);

4.1.1.2 Open questions for the mechanism of combined analgs

The first open question for combining analysesasv hio treat those kinds of individual
response that are not defined for some analysigifum but are assumed by the flags. For example,
one of the analyses involved in the evaluationarfibined response does not define the objective
function, but its flags request that the objecfivection of this analysis is added to the objective
function of the combined problem. Currently thisuation will generate an error that will be
reported by the functionombinedanalysis . On one hand this imposes less freedom (e.g. the
user of the system must take care about which nsspis defined for which problem). On the other

50



4. Modification and transformation of optimizatiproblems IOptLib User's Manual

hand, this is more strict what regards detectionrifitended situations (reflected as errors orrothe
kind of exceptional situations). Currently, we avér of a stricter system, i.e. flags that aretegla

to calculation of a given type of response (i.gective or constraint functions) may be set for a
given individual analysis only if this kind of remmse is actually defined for that analysis, and the
opposite is regarded an error.

Another open question is whether to include additié penalty terms to objective function
in the mechanism of combined analysis. One arguneewio this is to make the mechanism of
combining problem definition very general and vétsaThe first argument against this is that the
complexity of implementation is increased in thiaywvbut for this specific argument the limit of
when the things become too complex to justify thedfits of generality is very intuitive and would
probably be defined differently by different promg. A better founded argument against this
functionality lies in the penalty business itsé@lfie mechanism for combining response is somehow
too weak for the implementation of what we needcfamstruction of any kind of penalty functions.
This is because the types of penalty functions niugstdefined in advance with this kind of
mechanism. For true flexibility when defining thenalty function, one should have the ability of
arbitrary definition of penalty terms as the funatiof penalty parameters and constraint functions.
Therefore, currently it is more accepted opinioat tonstruction of penalty functions should not
rely on the mechanism of combining different response, but should be implemented specially for
this purpose.

In order to recapitulate: Mechanism of combininglggses and constraints should be used
only for simple combinations of objective functioaad constraints of individual analyses into
response of the combined analyses. Flags that eddéfow response of individual analysis is
combined should be consistent with what can agtusl calculated by a specific analysis. More
complex forms of combination (such as e.g. consttnof penalty functions where penalty terms
can be arbitrary function of constraints and pgnaédtrameters) must be implemented separately.

4.2 Handling of bound constraints@

Sometimes we want to separately specify bound wingt in optimization problems of
form (1). In this case, in addition to constraidesined by constraint functiorggx) andc;(x) from
equation (1), we haveound constraints of the form

sx<r,k=1..n. (58)

In the above equatioly specify the lower bounds amgspecify the upper bounds on optimization
parameters, and they are arranged in vettanslk. In some cases, bounds will be defined only for
particular parameters, for some of which only mialirfi) or only maximal )" value is defined.

For the sake of convenience in implementation ehmatational procedures, we will use in such

1 In this notation, letteris used as “left” and as “right”.

51




4. Modification and transformation of optimizatiproblems IOptLib User's Manual

cases the formula (58) as if both bounds are defiaed will setl, =—c or r, = for those
bounds that are not defined

There are various possible reasons for statingid@onstraints separately. One reason is
just for convenience, since it is easier to defust the vectors of lower and upper bounds than to
explicitly state constraint functions that wouldpiy respect of the bounds at problem solution.
Another reason is that some algorithms can tremaplsi bound constraints much more efficiently
than other types of (generally nonlinear) constgaiand it is sometimes easy to guarantee within an
algorithm that bound constraints are never violateahy point where the response is evaluated.

The Investigative Optimization Library provides tfolowing utilities for handling bound
constraints:
» Implicit addition of constraint functions that inygbound constraints
» Addition of penalty terms related to bound consitisai
» Transformation of optimization parameters in suckay that bound constraints are
satisfied

There is a special data structure of typmundconstrdata designed to support the
related operations. Each individual utility can bsed to build higher level functionality. In
addition, a modified analysis function is providedhich modifies the original analysis in such a
way that any combination of the above operationseiformed, according to specifications on the
bound constraint structure. This analysis functiglh often be used in optimization algorithms that
will include separate handling of bound constraantsl will provide a high level tool to algorithm
designer, which can be utilized for easy and automee of pre-implemented utilities for bound
constraint handling.

Utilities for handling bound constraints are ddsed in more details below. Example
application is the nonlinear constrained simplegodathm with ability of handling bound
constraints, which is described in{1]

Y In computer implementation, infinity will be repked by some large number. Typically the number abstich
values are considered infinity will be specifiegéther with lower and upper bounds, or some defalite will be
assumed such as#0

2 This algorithm also describes application@Sfexact penalty functions, which can be used inctlisearch methods
such as the simplex algorithm.

52



4. Modification and transformation of optimizatiproblems IOptLib User's Manual

4.2.1 Combination of discontinuous penalty functions andransformation

of co-ordinates@1

4.2.1.1 Discontinuous exact penalty functions

When only comparison of the objective function dfiedent parameters is performed by the
optimization algorithm (such as e.g. the Nelder-M&mplex method for unconstrained nonlinear
minimization), the method may under some circuncsdrstill work in the case of diccontinuity of
the objective function. We can add jump discontiesito the objective function, and this does not
affect the efficiency of the method.

Let us denoté,(x) the modified objective function with added jumipabntinuities. As long
as

f(x)< (%)= (%)< fn(X,)
f(x)=f (%)= fa(x) = fu(X,)’ (59)

the minimum off,, is the same as the minimum fofThe above relation is valid if we define the
modified objective function in the following wayiffare 5):

[f(ix<e
fm(x)_{f(x)+h;xzc'h>0' (60)

This function is obtained frorby adding to it a positive constant within thddaling domain:
Q" ={x| f(x)=¢}. (61)

Edge of this domaid Q" is the level hypersurface (isosurface in 3D, isln 2D) off.

! Remark: this section needs cleaning in order to mah the standards of this document regarding clearrss and
conciseness.

53



4. Modification and transformation of optimizatiproblems IOptLib User's Manual

L
SRR
SRR
R
NTR

S &

WA

\\\ RIS
\ SRR

Figure 5: Original and modified objective function.

The fact that modification (60) that introducesuanp discontinuity does not change the
performance of the algorithm indicates that thehoétcould be efficiently modified for solution of
constraint problems by forming a discontinuous ex@nalty functionExact penalty function is
obtained by adding a penalty term such thamiaimum of the obtained penalty function
corresponds to the constraint minimum of the original problem. Solution of the original problem
can then be obtained by finding a minimum of thegtey function.

When only inequality constraints are present, #wafty function can be formed by addition
of penalty terms for each constraint in the follogvivay:

fp(x;pp):f(x)+§hp(cI (x);pp), (62)

where the penalty terms can be defined for examaple

0;,c<0
c ;h=00k=0. (63)

hp(q'{k'h}):{mkq

Non-negative penalty parameteandh must be large enough if we want tfiatepresents
an exact penalty function. In the sequel, we defir@e precisely the conditions that the penalty
function is exact penalty function.

We usually require

h,(0:p,)=0. (64)

54



4. Modification and transformation of optimizatiproblems IOptLib User's Manual

It is clear that in the infeasible region wherel1 , c (x) >0, the derivative oh with respect to
the violated constraint must be positive, i.e.

ony(ep,)
dc

c>0> 0. (65)

However, this is not a sufficient condition thaetpenalty function has a local minimum in the
solution of the constrained problem. The derivativest be large enough in order to compensate for
eventual falling of the objective function as thenstraint function grows. What one needs to
achieve is that in the infeasible region, the dotdpct of the gradient of the penalty function with
the gradient of any constraint function belongiogtviolated constraint, is positive.

The sufficient condition that the penalty functisrexact (i.e. it has a local minimum in the
solution of the original constrained optimizatiorolplem) is the following: There must exist a
neighborhoodt of the solutionx” such that in each point of the neighborhood, tizlignt of the
penalty function has positive dot product with dgeadis of all constraint functions which are greater
than zero (i.e. belong to violated constraintsthiat point. In this way, we can find a neighborhood
of X" such that a descent path exists from any poithigineighborhood tx". The condition can
be expressed in the following way:

OxOe, 0101,

C.(X)>03<DX fp(x;pp),Dq(x)>>0' (66)

The above equation says that the directional gnaditthe penalty function must be positive in the
direction of the gradient of any violated consttaifrom (62) we have

O, f,(xip,)=0f (x)+zw Oc (x) (67)

. e=(a ()

Equation (66) defines the condition that the pgnélihction has a local minimum that
corresponds to the solution of the original constraptimization problem. From the algorithmic
point of view this is not sufficient. We want toseme that minimization algorithm applied to the
penalty function will actually yield the local mmum that corresponds to a local solution of the
unconstrained problem (since the penalty functian bave several local minima or can even be
unbounded below). In our case we will apply theamstraint Nelder-Mead simplex algorithm, but
the same reasoning applies to application of o#fgorithms. It is intuitively obvious that if the
regione on which (66) holds is larger, the applied miniatian algorithm will converge to the
solution of the original problem from a larger magi Running the algorithm from a starting point
that is far from the region where (66) holds wilbra likely cause it to diverge (in the case that th
penalty function is unbounded below) or converge tocal minimum that is not a solution of the
original problem.

55



4. Modification and transformation of optimizatiproblems IOptLib User's Manual

The best is if the condition (66) holds everywhe&ensidering equations (66) and (67), in
order to achieve that, the functiti(c;...) must grow sufficiently fast with its. In this way, the
second term in (67) can compensate for eventualtivegprojection of the gradient of the objective
function on the gradients of violated constraiitewever, makinghy(c;...) grow too fast close to
¢=0 would introduce ill-conditioning in the minimitzan of the penalty function. We must therefore
look for a suitable compromise, which is not triviasome cases.

While addition of discontinuous term of the forn®J&loes not affect the performance of the
Nelder-Mead simplex method, addition of penaltynerof the form (62) can significantly reduce
its efficiency. This is because the penalty termstlthe space where the simplex moves, and the
simplex makes more rejected trials when hittingrglggowth of the penalty function at constraint
boundaries.

A disadvantage of the penalty function generateti,yf the form (63) is that it is difficult
to fulfill the condition (66) on a large sub-domsiaf the infeasible domain in the cases where the
objective function falls progressively or when ttenstraint functions grow regressively with the
distance from the zero level hyper-surfaces of tamg functions. This can be alleviated by
makingh, grow progressively with increasing positive argaineny adding exponential or higher
order monomial terms, e.g.

0;c<0
h, (c.{k.h})= h+k(q +(&j2+(&j3+(&j4+exlo(&n . o N=00k=0. (68)
4 8) 16 64

Increasing denominators take care that higher deters contribute significantly only when
the constraint functions are large enough, whickesaninimization of the penalty function less ill
conditioned. However, this is not so important whiee Nelder-Mead simplex method is used for
minimization of the penalty function, because thisthod only makes comparisons of function
values and does not make use of higher order famatformation.

4.2.1.2 Strict respect of bound constraints by parameter tansformation @

This section describes how violation of bound coaists can be prevented during
minimization by the simplex method. This is done &ynew analysis function, which shits
parameter components that violate bound constraimigterval limits, calculates the objective and
constraint functions in new points, and adds a Iperterm that depends on how much the
constraints were violated.

This procedure should be significantly changed #fdgorithm that uses function
approximations to increase the speed. This is tsectne procedure introduces discontinuities in the
derivatives at constraint bounds.

56



4. Modification and transformation of optimizatiproblems IOptLib User's Manual

Let us say that we are solving the problem (1) waitity inequality constraints and with
additionalbound constraints on the parameter vector:

Ok,l, =x <r, . (69)

In many cases, the bound constraints are defingdfonparticular parameters, for some of which

only minimal () or only maximal ()" value is defined. For the sake of convenience in
implementation of computational procedures, we wié the formula (58) as if both bounds are
defined, and will set, =-c andr, = for those cases where the bounds are not defined.

Let us say that a direct analysis is called atrpatarsx={x, X, ..., X} where some of the bound
constraints are violated. We actually run the agialgt modified parametes, which are obtained

by correction of actual parameters (at which thed\asis is requested) in such a way that which are
defined in such a way that bound constraints aisfieal:

X 1 €% <1
Ok, %, =1 I, % <l (70)

s % > T

We then modify the value of the objective functiorihe following way:

n

f(x)=f(x)+> h (x)+h (x) . (71)

where

0; otherwise

h, (X):{ hy (=% Py )il > o0

(72)

0 ; otherwise

n, (x):{ ny (%, 1P, )i <o

andk; is a function for generation of penalty terms ofamvenient form such as (63) or (68).
Constraint functions are not modified and are synsgt to the values of constraint functionsat

0igdl,e(x)=¢(x) . (73)

Expression (72) is addition of penalty terms as(62) ad (63), where the following
constraint functions are assigned to bound comsgrai

1 In this notation, letteris used as “left” and as “right”.

57




4. Modification and transformation of optimizatiproblems IOptLib User's Manual

|k>_°°301q(x): kT %

(74)
o <o=0¢ (X)=x T,

Penalty terms have the following contributionshe gradient of the objective function:

doh (t;p )
Dh»q (X) = _% €
t=(l—%) ’ (75)
oh (t;p
o, (=2l
t=(% 1)

wheree is the co-ordinate vectér(componenk equals 1, others equal 0).

4.2.2 Implementation remarks on penalty terms and bound onstraints®

This Section discusses some details relevant fpteimentation of penalty terms and bound
constraints in théOptLib (Investigative Optimization Library ). It is meant for developers and
advanced users of the library because a good kagelef the library is necessary to understand
the section.

We consider modification of the original analysimdtion according to (71). In principle,
the implementation of the modified analysis is guimple: we form a new analysis function that
takes the parameters, calculates the sum of petaltys according to parameters and bund
constraints, modifies the parameters, runs theyaisalunction at the modified parameters, adds the
calculated objective function to the sum of pen#édtyns to form the modified objective function,
takes the calculated constraint functions and metuhe results. All the operations could be
performed in place, i.e. without allocation of adxfial space for auxiliary variables.

The scheme is a bit more complicated if one woikle to preserve information that is not
returned by the modified analysis function, e.g thodified parameters at which the original
analysis function is performed, or the value of dbgective function at the modified parameters. In
the modified Nelder-Mead algorithm, for exampleistinformation is sometimes desired for
checking algorithm progress or for post-processing analyzing the acquired results. In this case,
additional storage is necessary to keep the additioformation.

There may be different possibilities with respextwhat information should be kept, and
modification of analysis defined by (71) can be bomad by other modifications such as adaptive
penalty functions. Different ways of handling thirage of additional data (together with the
appropriate data types) should be implementedderato optimize the speed and memory usage,

58



4. Modification and transformation of optimizatiproblems IOptLib User's Manual

but this would increase the complexity of code @sanaintenance costs. IFOptLib a compromise
solution is achieved by using some standard datestyand related functionality. In particular, the
type analysispoint is utilized that is intended for storage of analyesults. Because of
dynamically allocated storage for thing such option parameters and values of objective and
constraint functions, the amount of additional megmueecessary to support comfortable standard
uses is not large. Manipulation of additional sgerais relatively simple because standard
functionality designed arounahalysispoint the type can is used. This functionality can be
easily extended in line with the standards wheressary. Beside some additional storage, the cost
for using standard data types and procedures @ssalse additional data transcriptions (e.g. the
values of constraint functions are transcribed ftbm nested (innegnalysispoint structure to the
outer one).

A scheme for performing the modified analysis fimtts shown in Figure 6. The structure
of data that is passed to the modified functiosl$® shown in the figure.

59



4. Modification and transformation of optimizatiproblems IOptLib User's Manual

Call to optimization

Data structure:

'd original |
1 definition data) |

.................... -

i Optimal parameters

a (analysispoint)

E Pmin, Pmax

i p (vector)
Optimizatino algorithm Cjﬂ\(lc-)ﬂags it *)
f(p
Creates data storaggtypeanalysispoint) which e (p)
containsd. o .
a (analysispoint)
_______________________________ & (analysispoint) a->data
1p, calc. flags, ! 'calc. flags, | 5 (vecton) :
12 i LT (p). c(p) | ) :
"""""""" (fp).ap) | calc. flagsift *) i
f(p) ;
Modified analysis function ¢ (p) |
data i

Calculates modified parametgis

Calculated modified penalty terms

Runs original analysis at modified parameters
Transcribes the constraint functions
Calculates penalty terms

Calculates modified objective functioh

{additional data |
i (boundconstraintdata) &-

\>data

1d (original definition data)

1 Pmins Pmax pp

| e |

Analysis function

Creates data storaggtypeanalysispoint) which
containsd.

Figure 6: Scheme for handling bound constraints and pebettys in algorithms.

4.2.2.1 Example: How to prepare bound constraint data and malysis data in an

algorithm

This example shows how to prepare the bound constiata and data for the analysis
function in an optimization algorithm that handlesund constraints in a specific way. For most

60



4. Modification and transformation of optimizatiproblems IOptLib User's Manual

algorithms where handling of bound constraints wohe suitable, the example code can be
transferred by slight modifications. For exampldfedent amounts of data can be passed to the
algorithm through function arguments, in which vihg behavior of the algorithm can be adjusted
in more flexible way.

Example 4: Preparation of modified analysis function thatdias bound constraints, and its
data.

/* Definitions of variables (some of these can in f act be passed as arguments
of the function containing this code): */

vector lowbound,upbound;

double bignum;

int numparam,numobj,numconstr;

boundconstrdata bc=NULL;

real_bas_f penfunc=real_bas_f_zero_lin, constrfunc= real_bas_f _lin;
double kpen=1.0, kconstr=1.0;
void (*dispconstrdata) (void **), (*disppendata) (v oid **);

analysis_bas_f anfunc, anfuncorig;
void *ancd, *ancdorig;
analysispoint anptbc=NULL;

/* Praparation of bound constraint data: */

prepboundconstrdata(lowbound,upbound,bignum,numpara m,numobj,numconstr,&bc);
be->penfunc=penfunc;
setboundconstrpenpar(bc,0,0,(void *) &kpen,disppend ata);

if (penfunc!=NULL)
bc->transfparam=1,;
bc->constrfunc=constrfunc;

setboundconstrconstrpar(bc,0,0,(void *) &kconstr,di spconstrdata);
/* Preparation of modified analysis function that h andles the parameter
bounds: */
if (lowbound!=NULL || upbound!=NULL)
{
prepandata_boundconstr(anfuncorig,ancdorig,NULL,b c,&anptbc);

anfunc=anfunc_mod_boundconstr;
ancd=anptbcpen;
} else

anfunc=anfuncorig;
ancd=ancdorig;

}

/* Use of the analysis function anfunc and its defi nition data ancd for
response evaluation within the algorithm... */

/* Cleaning part: */
boundconstrdata (&bc);
dispanalysispoint (&anptbc);

61



4. Modification and transformation of optimizatiproblems IOptLib User's Manual

In the first part of the above example, the basidables used are declared. Some of these
variables will usually be passed as arguments ef ftimction that implements a particular
optimization algorithm where bound constraints hendled by a modified analysis function,
however this is not shown for simplicity. Declacgis are only shown in order to present the data
types used.

In the second part, the bound constraint data &pgred. The data structure of type
boundconstraintdata will contain data that defines the bounds (i.ee trectorslowbound and
upbound and the numbésignum), as well as data that specifies how to handlenba@onstraints. It
also contains space for auxiliary storage for therations (such as storage of constraint functions
generated out of bounds), which is used by operstibat are automatically performed in the
modified analysis functions.

The third part contains a typical preparation of thodified analysis function that will
handle bound constraints. Instructions for handtimg bound constraints are bo that has been
prepared before, and the definition data for thaiffexl analysis function is prepared according to
the scheme in Figure 6 (right-hand side), usingettistingbc. The definition data will be a pointer
anptbc of type analysispoint, whosedata field contains another pointer of typealysispoint, and
thedata field of this structure (i.eanptbc->data->data; note the necessary data casts, becdatse
is of type void *) will contain the pointer to boditonstraint definition datac.

Preparation of bound constraint data:

In this stage only the data that is related to blotonstraints and their handling is prepared.
The part where the modified analysis is definedfollow immediately, but these parts can also be
separated. An example of preparation of bound cainstdata can be found in 10ptLib function
NLPSimpboundbas() of the moduleptsimp.c

In the line

prepboundconstrdata(lowbound,upbound,bignum,numpara m,numobj,numconstr,&bc);

the bound constraint data structlre is allocated (if not already allocated) and itiitied, and
vector of lower and upper boundswbound andupbound) are copied to the structure together with
bignum, which specify the large absolute value above Wwhiounds are considered unspecified.
Also problem related data that are necessary fairecoperformance of procedures (number of
parameterswumparam, number of objective functionsumobj and number of constraint functions
numconstr of the_original problemare set.

The following code segment specifies whether thdifieml analysis function will add
penalty terms corresponding to bound constraintedmbjective function:

bc->penfunc=penfunc;
setboundconstrpenpar(bc,0,0,(void *) &kpen,disppend ata);
if (penfunc!=NULL)

bc->transfparam=1,

In the first line we set the penalty generatingcfion, which defines the form of the added
penalty terms. Penalty generating function candss@d as argument to the optimization algorithm,
but more often a particular form (suchrasal_bas_f_zero_lin() ) will be prescribed by the
algorithm (and possibly only some coefficients v passed through arguments). If this function
is NULL then penalty terms will not be added.

62



4. Modification and transformation of optimizatiproblems IOptLib User's Manual

The second line sets the definition data for theafig generating function. In this case, the
same data is set for all bound constraints (becthessecond and the third argument are 0). In
general, data can be specified for each comporegdrately, and also separately for lower and
upper bounds (the second argument in this casdfisgebe corresponding component; if the third
argument is non-zero then data is set for lowembhuln the above case, the penalty generating
function used iseal_bas f zero_lin (assigned in definition of the variakpenfunc), which
requires a single non-negative coefficient in foofna pointer to a number of tymouble as
definition data. The address of the variakpen is therefore passed as definition data for penalty
generating function.

At the end, we specify that transformation of pasters must also be performed by the
modified analysis function, such that bound comstsawill always be satisfied at parameters at
which the original analysis functioanfuncorig will be called. This is used e.g. in the nonlinear
constraint simplex algorithm with bound constrdiandling, but should not be in general used in
gradient based algorithrhs

Finally, instructions for conversion of bounds cargmeter values to usual constraints are
specified:
bc->constrfunc=constrfunc;
setboundconstrconstrpar(bc,0,0,(void *) &kconstr,di spconstrdata);

This is similar to instructions for addition of @ty terms. If constraint generating function
congtrfunc is NULL then bounds will not be converted to notrmanstraints. Otherwise, a separate
constraint will be added in the modified analysiadtion for each bound, represented by a suitable
constraint function. Similar to penalty terms, doaisit function is evaluated by applicationkaf-
>constrfunc to the difference between parameter componentthedcorresponding bound
(with sign defined such that the difference is pwesi when bound is violated). In the above
example, linear functionf(k)=x) is used as constraint generating function. Itplémentation
real_bas f zero lin is assigned in definition of the varialdenstrfunc. In the second line,
definition data for this function (which must agdie a pointer to a single coefficient of type
double ) is set orbc (again, the same data is used for all bounds).

Preparation of modified analysis function:

In the example, original analysis function withginal definition data is used if bounds are
not defined. This is done in the second part offtbeanch:

anfunc=anfuncorig;
ancd=ancdorig;

If bounds are specified, then the modified analfteistion will be used, which performs the
requested additional operations according to thenfaconstraints (defined by the lower bound
vectorlowbound, upper bound vectapbound and parametesignum):

prepandata_boundconstr(anfuncorig,ancdorig,NULL,b c,&anptbc);
anfunc=anfunc_mod_boundconstr;
ancd=anptbcpen;

! Because it gives raise to non-differentiable diijecfunction of the modified problem (still continus if the penalty
generating function is continuous). Transformatainparameters in simplex algorithm ensures thatslation of
modified problem exactly corresponds to the sotutid the original problem with added bound constsieven if the
penalty function is not exact.

63



4. Modification and transformation of optimizatiproblems IOptLib User's Manual

In the first line, data structuanptbc that is used as definition data for the modifiedlgsis
is prepared in the form required by the functamfunc_mod_boundconstr() . Function
arguments are the original analysis function (repnéing the problem that is solved, except for
bound constraints), its definition data, the fuoctifor de-allocation of definition data (which is
NULL, since original definition data is preparedtire calling environment and should also be de-
allocated there if dynamically allocated), the bbwonstraint data structube.

In the second and third line, the modified analysisction and its definition data are set.

Analysis function is set tanfunc_mod_boundconstr() , Which is pre-defined in 10ptLib and
automatically performs all operations for handllmgund constraints, according to instructions on
the bound constraint data structbee The structur@nptbc of typeanalaysispoint , which has

been prepared in the first line, will be used d@ni@n data for this modified analysis functiolits
structure is depicted in the right-hand side ofufég6 (which schematically shows function of
anfunc_mod_boundconstr() ).

It is appropriate to mention at this point thatsitadvisable to launch an error or warning
message if lower or upper bounds are defined, éitiher the penalty generating nor the constraint
generating function is specified (because in tlisecthe bounds will be ignored if only handled
implicitly by the modified analysis function; boundan still be explicitly handled by the algorithm
itself).

Cleaning part:

At the end, de-allocation of dynamically allocatiata must be performed:

boundconstrdata (&bc);
dispanalysispoint (&anptbc);

In the above example, the bound constraint ddia was allocated by
prepboundconstrdatal() and the definition data for modified analysigptbc has been
allocated byprepandata_boundconstr() . Although bc is also put oranptbc, there is an
agreement that bound constraint data is neverldeasatd together with the definition data for the
modified analysis functioanfunc_mod_boundconstr()

Note that in the initialization paibc andanptbc must be set to NULL. On the contrary, they
would contain an undefined address while not atextawhich would result in very unpleasant
errors in functions for their initialization.

Let be emphasized again thefunc_mod_boundconstr() uses its definition data
(that must be of typanalysispoint ) not only for definition of its behavior, but al§or storing
analysis results. The modified response (togethith wptimization parameters at which the
function is called) is stored directly in definitiodataanptbc before returned through output
arguments. In addition, the results of the origianhlysis function are stored @mptbc->data,
which must also be a pointer of typaalysispoint , together with optimization parameters at
which the original analysis function is called. $heparameters may be transformed in order to
satisfy bound constraints (transformation is penfed if bc->transfparam is non-zero). Only
anptbc->data->data alone actually acts as definition data for the ified analysis function. It is
set tobc by prepandata_boundconstr() . Note that it is agreement that the bound conmtrai
data (in this caskbc) is never de-allocated together with the defimititata for modified analysis (in
this caseanptbc, of typeanalysispoint ), therefore it must be de-allocated separately.

64



4. Modification and transformation of optimizatiproblems

IOptLib User's Manual

4.2.2.2 Basic tools for handling bound constraints

4.2.2.3 Addition of penalty terms

4.2.2.4 Conversion of bound constraints to ordinary constrints

4.2.2.5 Modified analysis function

65



5. Building Blocks for Successive Approximations IOptLib User's Manual

5 BUILDING BLOCKS FOR SUCCESSIVE APPROXIMATIONS

©

5.1 Introduction

Optimization algorithms employing successive appnation of response functions are one
of the main targets of 10ptLib. This chapter fidgscribes basic instrumentation for building and
using response approximations. The second parteisoted to description of implemented
algorithms that make use of response approximation.

We need to mention that many different approxinmatieethods can be used in optimization
algorithms. I0ptLib is intended to provide readyutse tools for a number of important classes of
approximations as well as to allow extension wighvrclasses. Therefore, there will be a fair level
of abstraction in the top-most level functions atetta types. This introduction is intended to
provide the description of the approximation systestarting from the top-most levels.

There are several common or lower level utilitimttare also used as part of the
instrumentation for successive approximations,aratdescribed in another sections because their
more general and basic nature. In such casesenefes to the appropriate sections are made.

Overview of intended functionality:

In order to give a feeling of a large diversitytobls that should be supported, let us give a
brief overview of what we would like to support the near futureLow order polynomial
approximations such as linear or quadratic are considered bagsmoaimation types. These
approximations havkocal character. They are determined by setaistant coefficients of a fixed
set ofbasis functions, which is used over the whole design space (pefficients are evaluated
once for all). The effective range of these apprations is limited by the domain in which the
approximated function can be adequately (i.e. vgithall enough error) approximated by the
corresponding polynomial. Coefficients are mosewftalculated by théeast squares method,
which minimizes the weighted sum of squares of rdjgancies between the approximation and
original function over the sampling points. Besa&énear combination of a set of basis functions,

66



5. Building Blocks for Successive Approximations IOptLib User's Manual

the coefficients can also occur in non-linear fobmt still be calculated by the same least squares
minimization procedure (non-linear least squargg@pmations).

Different kinds of approximations are designed teercome the local character of
approximations with constant coefficients, ekgiging approximation ormoving least squares
approximation. The moving least squares approxonats derived from corresponding constant
coefficient least squares approximation, wherefamefits are not constants in the design space and
must be calculated in each point by the usual legstres procedure. This is achieved by non-
constant weights, which are usually functions & tlistance between the point of evaluation and
the sampling point to which the weight corresporMeving least squares give rise to a whole set
of possible definitions of weighting functions.

Apart from using different types of approximationse must be able to adapt the
approximation procedures to different kinds of ggial response. Most fundamentally, analysis can
be or can not be able to provigeadients of the response, and one must provide efficieramaef
constructing approximations according to the currgtuation regarding this. One can always
calculate gradients numerically, but as concermsagmation, it is usually far more efficient (and
numerically stable) to just sample non-derivatigsponse in more points and use all the sampled
information in building approximations than to fingserform additional evaluations to calculate
derivatives, and then used derivative informatiobuilding approximations.

Another thing, which is more related to the natofearticular optimization problems, is
that response functions can have very differenpgnties e.g. with respect to effective range of low
order approximations, which may be crucial for deieation of sampling region and step
restriction in restricted step methods. Sometimesnay assume that the objective function will be
more problematic from this respect, and therefar®raatic adjustment of algorithm parameters
can be based on check performed only on the obgeétinction and not on constraint functions.
Sometimes this would not be true, which would wflen how algorithms should be constructed.
The underlying approximation utilities should besigaed in such a way that all different situations
can be handled.

Remarks on terminology:

A wide variety of terms related to this field arsed in literature, not always in uniform
manner. A widely used expressiomditi-point approximations’ is sometimes designated to stress
that response approximations are generated on bascaluation (sampling) of the response in
many points in the parameter space, in contrarl @i. Taylor expansion, which is obtained by
evaluating the response and its derivatives imglsipoint. The termresponse surface methods’ is
sometimes used generally for optimization (or otleralysis) methods that make use of
approximations based on sampling response in afgmints. We find this term less appropriate
because the response surface could adequatelytoetke graph of the actual response function
rather than its local approximation. Therefore wefgr the term fesponse approximation
methods”.

5.1.1 Overview of generic utilities from top to bottom

67



5. Building Blocks for Successive Approximations IOptLib User's Manual

5.1.1.1 Hierarchical (top to bottom) arrangement that enabg&s horizontal interactions

On top of the diversity outlined above (but notameped from this), a nhumber of purely
implementation issues arise. For example, one ipmess whether approximation of analysis
response should be fundamentally implemented omfagpandard vector functionSéction2.3.3)
such as numerical differentiatioséction2.5.1.2, 2.5) or on top of standard analysis fumdti
(Section2.3.1).

It is decided that approximation utilities will bmified on a lower level, i.e. on the level of a
single scalar response function. Generic utilif@sbuilding approximations of scalar functions of
vector variable must therefore be provided and mamsed very generally for different purposes.
However, in the case where several scalar compsmémesponse are interconnected in some way
(which is the case with different optimization remspe functions), it is inevitable that
implementation must take into account these coiorecfor the sake of efficiency.

One of the common points is that optimization apndstraint functions will typically be
sampled in same points in the parameter space. \Wlethe same weights are used in the usual or
moving least squares, approximation coefficientd kg calculated by solving linear systems of
equations where system matrices will be the samealioresponse functions. For the sake of
efficiency, the system matrix should be evaluatess€¢mbled) and stored only once, and for the
solution of the corresponding systems of equatitiesdecomposition stage can be performed only
once for all the response functions (which willthis case produce different right-hand sides).
Another example when sharing of resources for appration of different response functions is
sensible is weighting functions (and possibly thadéfinition data) used for calculating weight
assigned to sampling points. Although approximatiofi individual scalar responses are treated
separately, it must be possible that these appmations share common resources, which are
managed by higher levels (e.g. generic approximatimction for analysis or vector response).
This is exactly the way how things are implementewill be made evident in the explanations of
individual subjects. Separate treatment, on theratland, enables development of approximation
utilities independently of higher level algorithn@ochitecture.

5.1.2 Basic scheme for use of approximations of analysiesponse

5.1.3 Basic approximation data types@

68



5. Building Blocks for Successive Approximations IOptLib User's Manual

5.2 Implementation noted @

5.2.1 Specific and common auxiliary data structures

Different input data, intermediate results and Ifiapproximation data are stored on
auxiliary approximation data structures (typexapproxdata ). Data stored on this structure
have uniform structure, regardless of the typesifgle or collective) approximated functions. Input
data Whose structure depends on the type of theosipmated functions (e.g. vector function,
analysis response function, etc.) are on the basproximation structure of type
funcapproxdata

Since some of the input or intermediate data dafisipproximations can be common for all
the collectively approximated functions, there ig@mmon auxiliary data structure for carrying
approximation data common to all functions, andahare specific structures for each individual
approximated function. Most of the data can resitleer on the specific or on the common data
structure. Individual types of data (which someSmefers to groups of data) are treated
individually, which enables complete flexibility oflefining which data is common for all
collectively approximated functions and which ig.n&hen for some function a given kind of data
is defined both on common and individual data s$tneg; the_individual structure priority is taken
into accountand the individual data is used. Intermediate Itesare stored on the individual
structure if at least any of the input data neagssa produce that output is provided on the
individual structure, and it is stored on the comnstructure if all the input data come from the
common structure. Such arrangement enables a fabdlbility in saving memory when things can
be treated commonly for all functions (e.g. weigbts sampling points) and defining things
individually when desirable.

5.2.2 Approximation data updating functions

5.2.2.1 Updating weights

Function approxupdateweights makes updates the weight information if not yet
updated. It takes pointers to the common and speaikiliary structures as arguments (therefore it
does not need to determine itself which is the ifijpestructure — this must be done in the calling
environment). One of the common and auxiliary dtmes may be NULL (to allow, for example,
approximating a single (scalar) function).

Input data fields on thauxapproxdata  structure araveightfunc  with its definition
dataweightdata  (these define the weighting function, normally hwitossibility of analytical
gradient calculation) anchultweightst . The second structure defines eventual multiplieat

69



5. Building Blocks for Successive Approximations IOptLib User's Manual

factors by which weights of individual samples ameltiplied’, which enables defining a-priori
importance of the samples (e.g. for filtering reegoIf weighting function is not defined then this
structure itself defines actual weights

Basic output weighting data fields ameightst  (weights corresponding to samples) and
gradweightst (gradients of these weights with respect to corates of point of evaluation).
Corresponding update flaggp_weight andup_gradweight define whether these data are
updated or not (i.e. they need to be re-calculfxtad input data before they are used).

Beside that, there are auxiliary structuvesweight and matgradweight , in which
weights and their gradients are assembled in véotatrix) form required by some functions for
calculating approximation. If these forms are reeglithen transcription is done every time
weighting data is needed. This is done by the wigighdata update function even if the weighting
data is updated, in order to ensure that informasaip-to-date in every situation (see below).

It is permissible that one kind of weight inputaas defined on a common structure and
another on the specific function. In this caseulteyy data is defined on the specific function.yOn
if all input weighting data is defined on the commrairucture then the results will also be defined
on the common structure.

Function for updating weighting data is declared as

int approxparamtomat(funcapproxdata fa, auxapproxda ta common, auxapproxdata
spec, auxapproxdata *addractive)

The first argument is the pointer to (collectivg)peoximation data structure that can
represent approximations of multiple functions. sThargument is optional and is used
predominantly for identification reasons in err@ports. Pointers to the common and specific
auxiliary approximation data structures follow,wdfich at least one must be non-NULL. The last
parameter is address where the pointer to the eactiwiliary data structure is stored (i.e. the
structure where resulting weighting data is star@dhis parameter is also optional and is usually
used when the caller would like to know which ie thuxiliary data structure where results are
stored (i.e. whether this is specific or commonditire).

5.2.2.1.1 Directly setting the weights:

There is also a possibility that weights correspagpdo samplegand eventually their
gradients with respect to evaluation point co-catés) are provided directly (externally sé8. the
resulting fieldsweightst and eventuallygradweightst are specified on the appropriate
auxiliary approximation structure. In this caseg thpdate flags (fieldup_weight and
up_gradweight ) must be set, because otherwise updating utilitieald try to overwrite the
externally set resulting fields. Just because & possibility of directly providing resulting
weighting data, when weights are also requiredeictar forn? (and their gradients in matrix form),

L If not specified, factor 1 is assumed for all séempif partially specified, factor 0 is assumed floose samples for
which factors are not specified.

2 Which are considered constant, with gradientseOtfiey are not applicable e.g. for the movingtisguares method.
% |.e. not only as pointers to type double on akstac

70



5. Building Blocks for Successive Approximations IOptLib User's Manual

the function for updating weighting data will daniscription to vector (matrix) form even if the
update flags are set.

5.3 Approximation utilities — To implemerﬁ @

5.3.1 Things not yet implemented

Linear least squares with general basis functites \We either specify functions and data
for evaluation of basis functions, or we specifjuea of basis functions in the sampling points (i.e
they are evaluated externally).

5.3.2 Efficiency issues

For linear least squares approximations (linearu@dyatic polynomials, also moving least
squares), implement functions thd not solve for coefficients but only assemble the system
matrix and right-hand side vector! Use of these functions should replace straighicfions
which assemble and solve the equations at the Sarae

This will improve the efficiency in the cases whsBveral equations have the same system
matrix but different right-hand sides, because dgmusition can be made only once for all right
hand sides leading to different coefficients. Fraraple, usually there will be the same system
matrix for all response functions (if more than ome. if there are objective and constraint
functions).

71



5. Building Blocks for Successive Approximations IOptLib User's Manual

5.4 Lower level utilities for approximations

5.4.1 Basis functions for WLS and MLS approximations

Linear weighted least squares and the moving E@stres approximations are based on a
set of basis functiof The first is simply a linear combination of bagisictions with constant
coefficients,

y(x;a)=af,(x)+a,f,(x)+.+a,f, (x)=> af (x), (76)
j=1
and the latter is a combination of basis functieith non-constant coefficients:
y(x)=2a(x) f(x). (77)
j=1

Approximation utilities of 10ptLib utilize an unifon function form for calculation of a
particular basis function in a particular paramgteint X, and eventually its derivatives. The
function prototype is as follows:

int basis_f _general ( int which,vector param, int *addrcalcval, double
**addrval,
int *addrcalcgrad,vector *addrgrad, void *clientdata);

Arguments of the function have the following meanin

« which (input arg.) specifies which of the basis functiémto be evaluated

» param (input arg.) is the vector of independent variakd¢ which this particular
function is evaluated

e addrcalcval (input/output arg.) is a pointer to an integert thgecifies whether
the function value should be calculated and retlifm®n-zero) or not (zero or a
NULL pointer). If non-zero and the function valueutd not be properly evaluated
then the integer pointed to by this argument isset.

e addrval (output arg.) is the address of a pointer to deibé. a variable of type
scalar ) where function value is stored if calculated.c#ficulation of function
value is requested then this address must be ndr-Nbut the pointer at the
address can be NULL (in this case the pointeriixated).

72



5. Building Blocks for Successive Approximations IOptLib User's Manual

e addrcalcgrad  (input/output arg.) is a pointer to an integett tzecifies whether
the gradient of the particular basis function stcug calculated and returned (non-
zero) or not (zero or a NULL pointer). If it points a non-zero and the function
gradient could not be properly evaluated then titeger pointed to by this argument
is set to -1 by the function.

e addrgrad (output arg.) is the address of a vector wheretfan gradient is stored
if calculated. If calculation of function gradieist requested then it must be non-
NULL. In this case, the vector at the address canNRJLL or of inconsistent
dimensions, in which case it will be allocated @atlocated by the function.

» clientdata is a pointer to eventual additional data that igedg defines the
basis functions. For example, for polynomial bafsiactions this would define
products of which variables and in which powers stibmte particular basis
functions, which enables e.g. the same functionower linear and quadratic basis
with different orders of basis functions. This argnt can be NULL for the
functions that do not require additional definitidata (e.g. a particular function for
quadratic basis with agreed order of basis funstievhere all basis functions are
precisely known for space of arbitrary dimensionwhich is known form the
parameter vector). Otherwise, the type of the daiat be consistent with what the
function expects.

* Function returns 0 if everything is OK or a negetérror code if an error occurs.

5.4.1.1 Arbitrary polynomial basis functions

The function basis_f pol is provided for arbitrapplynomial functions. Its type is
equivalent to the type described in the beginnihngextion 5.4.1 and is declared as

int basis_f_pol ( int which,vector param, int *addrcalcval, double **addrval,
int *addrcalcgrad,vector *addrgrad, void *clientdata);

The definition data for this function must be a stack (typgack ) that contains an index
table (typeindtab ) for each basis function. The number of elemefhth@stack must therefore be
equivalent to the number of basis functions. Bdgisctions are monomials, more specifically
products of arbitrary numbers (possibly 0) of vilés. Examples of basis functions with
corresponding indices are:

1 - {} (in this case the index table can be NULL,ibcan be allocated but containing no
indices)

® &@4 - {3!4}
*  X5"=XsXs — {5,5}
s X —{2}

User of the function must compose the definitiotadzfore calling the function, for which
purpose pre-defined utilities for particular stamddasis can be used. In particular, IOptLib
provides utilities for linear and quadratic baségwe basis functions are sorted in a particulagord
(Section 5.4.1.2).

73



5. Building Blocks for Successive Approximations IOptLib User's Manual

5.4.1.2 Linear and quadratic basis functions in standard oder

I0ptLib specifically provides some utilities for daparticular bases — linear and quadratic —
where basis functions are sorted in an agreed .ofther library provides e.g. utilities for setting u
the appropriate definition data for these sets adid functions for the functiobasis_f_pol
described in Section 5.4.1.1, and utilities foraremngements of coefficients into constant, linear
and (eventually) quadratic term. For other operatisuch as the calculation of a single basis
function and eventually its derivative, or calcidat of a linear combination of basis functions
(which is in the case of ordinary weighted leastissgs equivalent to calculation function
approximation in a specific task), more generatfioms from Sections 5.4.1 and 5.4.1.1 are used.

Standard linear basisin (1" consists of the following basis functions (in #ane order):
LX XX, (78)

Standard quadratic basisin 1" consists of the following basis functions (in theme
order):

1,

Xy Xy, ooy Xy

X2, X2, X2, o X2,

% 06, % Xy oy X, K, (79)
% DK, X, Xy, 0 X5 0K

X B,

This order is taken because lower order terms aree8mes given more importance
(sometimes higher order terms are switched on omhye final stages of computation for better
precision), and in the case of quadratic basislpged treatment of pure quadratic terms is easier
this way.

For composition of the definition data for basi:dtions of linear and quadratic bases,
respectively, the following two functions are used:

setup_linear_basis_data (int dim, stack *addrst);
setup_quad_basis_data (int dim, stack *addrst);

For both functions, argumedim specifies the dimension of space, and arguraddtst
is the address of the stack on which basis functipecifications are put as index tables (type
indtab ). Functions automatically perfume all the necegssa+allocation. The definition data are
de-alllocated by the functiodisp_pol_basis_data . The functiondispstackallspec
can also be used:

74



5. Building Blocks for Successive Approximations IOptLib User's Manual

Example 5: Setup, use and de-allocation of definition datassfandard linear and quadratic
bases.

stack deflin=NULL,defbas=NULL; /* Do not forget to initialize the stacks to
NULL */
int dimension=>5;

éétup_linear_basis_data (dimension, &deflin);
setup_quad_basis_data (int dim, &defquad);

/* Use of the definition data ... */

/* Deallocation of the definition data: */

disp_pol_basis_data(&deflin); /* by use of specifi ¢ functio nfor this
purpose — safer way */

dispstackallspec(&defquad, (void (*) (void **)) dis pindtab); /* By use of
functins for de-allocation of stacks and index tabl es*/

75



5. Building Blocks for Successive Approximations IOptLib User's Manual

5.4.1.3 Planning types and utiIities@ WT

Table 4 shows data used for evaluation of appratkéma of a set of functiongi(x), for
ordinary weighted least squares and moving leasareg. If something is considered a function
then this is shown in the left-most column with épeéndent variable in round brackets.
Dependencies relevant for evaluation proceduresamvn in round brackets in the rest two
columns. Also, indices show relations (indedlenotes different functions and indkxdifferent
sampling points, and indebdenotes different basis function). For example, given quantity has
indexi this means that it is calculated differently faick functiong;(x), but it does not mean that
gi(X) or g occurs explicitly in evaluation formula.

Considerations:

One of the problems is that the basliata structures (approximation objects) must be
appropriate for different kinds of approximationge.g. weighted least squares & moving least
squares). The problem can be solved in such a hatyeach approximation has its own set of
utilities (e.g. “update the structure when samplpaints are changed”) and corresponding data
(some of the data may be shared, but only if theeethe same rules for updating). Then, there are
generic utilities, which perform the utilities fall types of approximations that will eventuallyeus
the same data structure. Butother possibility is

Some data are shared across different utilities somde data are shared across different
functions to be approximated.

- How to know which data are update@®?? (how to keep information on whether data has
been updated?) This can not be done through NUIld-KMOLL. (By flags for each data, taking into
account specially local and global aux. approxa®dpt

Would it be possible to treat e.g. weighting functins common and sampling specific, or
vice versa?- Maybe yes, but only for all functions specificfor all functions common - no use of
making things different for individual functions. ayibe this can be allowed only for weighting
functions??? — what about accounting for taking iatcount a different number of samples for
different functions (e.g. objective/constraint)?

Suggestions:

For each kind of approximation (even with minim#fatences), have completely separate
data (or client data).

Unify data structure carrying approximations of all different functions with common
sampling, then distinguish (e.g. between vector analysis functions) by functions that handle
mapping of vector data (sampled) to individual datgument: this will mean only one version of
different kinds ofupdating functions for each kind of approximation (othemvissmbinatorial).

76



5. Building Blocks for Successive Approximations IOptLib User's Manual

Global structure will contain a stack of local diaty approximation data and auxiliary
global approximation data.

Auxiliary approximation data structures (local agidbal) should carry pointers to a global
structure (is this necessary??) Unified data stredor a group of functions should

All calculations AND updateswill be performed through the unified structure $veral
approximations! For a single local approximatidrgre will simply be no global approximation!!!

Provide the “Updated information” by flags!

On the unified global structurapdate function pointers should be only for updating input
data (to reduce their number), eugdatesampling, updateweights, etc. Mapping of global data to
local should be done by different functions (beesdthss is bound to the type of the single- or rulti
valued function such as scalar, vector, or anglysisd these functions will in general use the
updating function after mapping is done. Updatingctions will in general only set updated flags
to 0, and then calculation functions will do allcessary checking and re-evaluation for the data,
because these functions are different for diffekemd of functions.

Function pointers for evaluation of a single approximated function should alsodesin
the unified global structure.

Common and specific data:

Auxiliary data (the data that is only used in cé&tion but does not represent intermediate
results) should be stored on the common data steict

For results and intermediate data (i.e. data thaaiculated or derived from other data) and
for input (independent) data, the decision on wéiethe data on the common structure or data on
the structure corresponding to individual functisrused, is made in the following way. If all the
data from which given data is derived is commomttie data is also common, otherwise the data
is specific. For input data that is not dependenother data, the rule is that if the data is alted
on the structure corresponding to a specific fuimcthen the data is considered specific, otherwise
the data is considered common.

Warning: treatment of common data as specific will leadwiorse efficiency, because
operations that could be performed only once fértted functions will be repeated for each
individual function.

Remarks to suggestions:

77



5. Building Blocks for Successive Approximations IOptLib User's Manual

funcapproxdata ()

stackstpoints (analysis points)

stackstparam (parameters if they are separates)
stackstval (values)

stackstgrad (gradients)

stackstdata (elements of typauxapproxdata - data for approximations of all functions)
auxapproxdata globauxapproxdata; \\

auxapproxdata:
type:analysi_bas f
set byprepanfuncnumgrad through argument
addrfunc
Returns numerically differentiated response ofdtiginal
analysis, converted from (numerically differentdjteector
response.

Figure 7: Approximation data structure.

5.4.1.3.1 Different types of data:

Common data shared by all approximations (input daa):
X (point of evaluation)

r« (sampling points)

Oik (functioni)

Intermediate data (auxiliary data)

78



5. Building Blocks for Successive Approximations IOptLib User's Manual

Final data (results)

Yai(X)

g / a i(xX) — Coefficients of approximation, different meamiffior different kinds of
approximations

Table 4: Data for ordinary weighted least squares and ngplaast squares approximation
with dependencies. Indéxdenotes different functions and indesifferent sampling points,
and indexX denotes different basis functions (only for linepproximation).

79



5. Building Blocks for Successive Approximations

IOptLib User's Manual

Data

Least squares / fields

Moving least squares

X (point of evaluation)

The same function coeffitgen
Approximation value changes.

Re-evaluate function coefficient
weight change. Left-hand side t
same for all functions if weightin
functions are the same.

ne

ry (sampling points)

Different coefficients. Left-rthiside
the same for all functions.

Different coefficients. Left-hand sid
the same for all functions.

vi(x) (basis functions) | yiory [ yiory
Basis bunctions may be different for differenhdtionsg;. For some tools, basis functions are nowhere @tpli
stated because they are just assumed (e.g. lopesdratic, etc.).
yik (basis functions) yi(ri) or yi(ry) (may be different fof y(ry) or
different functions, this is nat
common)
Wi(x)  (weighting  functions of / Wil(X) (ri) or wi(X)

sampling points)

Weighting functions may be differe

nt for functsmy, but this is not common.

Wy =(weights)

Wi(ry A, )
or wi(re, A, 9)

Wi(rX A)
or Wi(rpX A)

Weights may be different for different functiogysbut this is not common.

gi(x) (functioni)®

gik (function values
points)

in samplin

0 Gik (r'v)

Gik (W)

g / ai(x) (approximation coefficient
for gi(x))

5 a(Ci,di)=ai(Wioyi, Gi)=

C [/ C(x) (system matrix fon

calculating coefficients;)

C(WioYi)=C(ry)
or Ci (WikYid=Ci (ry)

CWi(X),Yi)=C(x,r)
or C; (Wik(X).Yu)=Ci(X.')

d; / di(x) (right-hand side of system
equations fog,)

fdi (Wi, Gis Yid=d i (1)

di (Wi(X), ik Yid=d i (X,I')

LUc /LU¢; (decomposition of)

LUc (C)=LU c(WikYi)=LU c(ri)
or LU ¢i(WikYind= LU ci(r')

Va(X) (@approximation of functiom -
the final result)

Yai(X) (Ci,di)=

Yai(X) (Ci,di)=

A, s (approximation region, definin
the weighting functions)

!

! Usually denoted bf(x).

2 Usually denoted bf(x) without an index, here we use different notatibasause there are several functions.

80



5. Building Blocks for Successive Approximations

IOptLib User's Manual

5.4.2 Weighting functions

Weighting functions are usually scalar functioret thave

the maximal value in the center of

approximation and fall with the distance to theteenin the most general form, we have

w(x)=1(JA (x-s) )
We have

A" A(x-s)
[A(-9)]

A(x-s)])

Ow(x)=f(

We have taken into account

01(g(d)= 1*(gb0) 00, Tfx =1

Of(Alx-s)=AT0f(x)

x=A(x-s)

(80)

(81)

(82)

If A is a symmetric real matrix then we can weUSU', whereD is a diagonal matrix
whose elements are eigenvalueg®\pfindU is orthogonal matrix whose columns are correspundi

normed eigenvectors.

81



6. Optimization algorithms IOptLib User's Manual

Figure 8: A possible choice for a one-dimensional weighfingctionw(t)=w(||A(X-9)]).

6 OPTIMIZATION ALGORITHMS @

7 TESTING SYSTEM @

The 10ptLib has an extensive system for testinglgébrithms and analysis functidn€ore
of this system is implemented in the modajgtest.c . In principle, the testing system can be
thought as consisting of test examples andtésedriver. The driver implements general utilities
that are independent of specific response, sucladalition of noise, counting and recording
analyses, automatic numerical differentiation, wlgtion of optima by robust built-in methods,
efficiency statistics, etc.

7.1 Registering an optimization problem or test case

In order to use the functionality of the test driem a particular optimization problem, the
problem must first beegistered in the testing systemin the simplest way, the problem can be
registered by calling theegoptprob  function with the following declaration:

int regoptprob(char *name, analysis_bas_f anfunc, v oid *andata, void
(*dispandata)(void **));

The registration functiomegoptprob  returns an unique identification number, which is
assigned to the problem when it is registered. Ftoim point on, the problem will usually be

! For analysis functions, one may for example testcobnsistency of the provided gradients of thparese. Some other
functionality is also planned such as automatitirtgof response smoothness.

82




8. Appendix: formulae for WLS and MLS IOptLib UseManual

referred to by this numbkrArguments of the function are a descriptive ngroeiginal analysis
function, its definition data and the function fiw-allocation of this definition data (if this fuian
is NULL then the definition data will not be de@dhted when the problem is unregistered).

The testing system is not used exclusively foritgstSome other modules may use it for
other purposes because of the easy use of itsajgnapplicable functionalify

©

You can take a look at the functitestopttest at the end obpttest.c in order to
get some basic ideas about how the testing systeusdd. This function was implemented for
testing functionality of the module as one goesigldt is expected that the testing system will be
extended drastically in the future, therefore clighkhe source code of the module and especially
the contents of the functiaestopttest may be performed in order to get more accurate and
updated information than can be found in the manwédpefully, what is currently found about the
testing system in the manuals should remain valithé future, it is only incomplete.

8 APPENDIX: FORMULAE FOR WLS AND MLS

This chapter lists some basic formulas for the g least squares and the moving least
squares approximations. A separate report on thextbods is in preparation, and this aims at
serving only as a quick reference for some portiohshis manual, in particular the Section 5:

Building Blocks for Successive Approximation>".

8.1 WLS approximation

Calculation of coefficients:

! There are also a number of predefined analysistiom which require an integer pointer as thenitéin data, and
the pointer to the identification number must besed in its place. These analysis functions lotegeriginal analysis
function and definition data through that pointand use them for calculation of the response (samele is
analyseoptprob ). After registration, the original analysis furtetican always be replaced agalyseoptprob

with pointer to the assigned problem ID as defamitdata.

2 This is optional (it can be NULL) and is used bpétion that print information about the problem.

% This is partially due to the fact that problema & simply referred to through an integer ID afftery are installed.

83




8. Appendix: formulae for WLS and MLS IOptLib UseManual

Ca=d, (83)
C, =D wl, (1) 1, (x,) (84)
d = ivlwkz f, (%) Yi (85)

Calculation of value and gradient of approximation:
5 Nb
f(x;a)=> af;(x), (86)
j=1

af(x;a)zszajafj(x)’ &)

0% j=1 0%

8.1.1 WLS with value & gradient information:

G = ::"1 (Wk f; (Xk) f; (Xk)) +ig(wkglzg)2(xkg )(;:(:(ng )J (88)
d ::Z;(sz fi (%) yk)+:‘zgzlg(wkgtzg)2(xkg)gktj (89)

w, is weight assigned to componémif the function gradient in the poikit

8.2 MLS approximation

C(x) a(x)=d(x)

a(x)=[a (), a,(x), -a,(x) ]

(90)

C-;(X):Zwk(x)z fi (%) T (%) (91)

84



8. Appendix: formulae for WLS and MLS IOptLib UWseManual

d (x) :;Wk(x)z f, (X ) Vi - (92)
Calculation of values:
()= 35 () 1(x). 99

8.2.1 Calculation of derivatives of the MLS approximation

ay(x;al(x Nb af(x) 0da(x
%:;(aj(x) a>£ ). a>£ )fj(x)j. (04)

Coefficientsa(x) in (94) are obtained by solution of the system) (&0taking into account
(91) and (92).

: da .
Calculation of %x‘ :

0a(x) _ ad(x) ac(x)

C(x) ax  dx  0X a(x)=q"(x) . (95)
OC;JX'(X) = : (ZWk (X) (?V(\)Ikx(|X) f, (Xk) f; (Xk)+ (96)
W, (X)2 9 f(;E(IXk) f, (Xk)+Wk (X)2 fi (Xk)a f(-;;Xk)J

Sequence of calculation:
1. AssemblyC, d according to (88) and (89).
2. Decompose, with eventual regularization if necessary (nbi& fprevious values of
a may be necessary for this).
3. Solve fora.
4. AssemblydC/dx, dd/dx, according to (96) and (97) All these (for edghare
assembled simultaneously, which reduse repeatedlatibn of gradients of andf,

85



8. Appendix: formulae for WLS and MLS IOptLib UWseManual

but requires a large additional storage. It is mee@nded tha the storage is on the
parent structure (in this way it is shared by afidtions).

5. Calculateq” and solve for foda/dx. It is again recommended thais common for
all functions.

Remarks:

The most problematic is simultaneous storage ad@ltlx for eachl. This could be avoided
by calculation ofg, for eachl separately, using the same storaged@rdx, and for dd/dx .
However, this would then require many) fepeated calculations @, fi and their gradients. For

now, we stick with simultaneous assembly of alividives of the system matrix and the right-hand
side vector.

8.2.2 Second order derivatives

92 y(x;a(X)) _
0% 09X,
ib:(aza_J(x) ( (X)_|_6aj (x)af;(x), 0a(x) o, (x)+aj ) o f, (X)J

0% 0X, ox 0x, 0%, 0X% 00X,

(98)

=1

In the above equation, coefficient{x) are obtained by solution of the system (90) by
taking into account (91) and (92). Derivatives ot toeﬁicients,a%x' , are calculated by solution
of the system of equations (95), taking into ac¢d@6) and (97).

d’a

Calculation of :
0% 0X,

Derivation of (95) yields:

c(x) 0%a(x) _ 0%d(x) 0°C(x) a(x)- dC(x) 9a(x) aC(x)aa(x) . (99)
0% 0%, 0%0X, 0%0X, 0% 0%, 0%, 0Xx
The second order derivatives of coefficients arairagbtained by solution of a system
equations with the same system matrix as in thetemu calculation for coefficients, and with
different right-hand side. The right-hand side asnposed of terms from equations (91), (92), (96),
(97), and the coefficienta and their derivatives, obtained by the solutioreqbiations (90) and

(95). The remaining terms are second order devieatof the system matri@ and the right-hand
side for calculation of derivatives, vecthr

86



8. Appendix: formulae for WLS and MLS

IOptLib UWseManual

By differentiation of (96), we have

9°C; (%)
0% 0X,
(Zawk(x)a

0%y
2w, (x)

Nv

2

k=1

w (X) |
R

ow (x) d f ()
ox  0x,
ow, (x) 9 f, (x,
0%, 0%
ow, (x)
0%,

~—

20, (x)

20, (x)

and by differentiation of (97), we have

“d (x) _
0X0X,
((zawk (x) ow, (x)

0x, 0X
2w, (x)

Nv

f

(X ) +2w,

N

ow, (x) 3 fi (%)

S A

20T (%),

262 fi (Xk)
0% 0x,

(100)
20 f (%) 0 f,(x)
0% 0 X,

w, (x)° f, (xk)a;):"—a(i;)

+

|

(%) +

0% w (x)
0% 09X,

J«)

ow, (x) 0 f (x,)

0x  0X,

f

() + 2w (X) +(101)

(x)

8.2.3 MLS with values and gradients

(102)

(103)

(104)




8. Appendix: formulae for WLS and MLS IOptLib UWseManual

0a(x) _ ad(x) acC(x)
0X 0X X

0O

(x) a(x) . (105)

(106)

(107)

8.3 Implementation remarks

8.3.1 Use of linear (affine) transformations in approximdion based
optimization algorithms

Affine transformations are typically used for samg| definition of restricted step
constraint, and for definition of weighting funat® Usually, linear transformations for different
purposes will have the same transformation matsixvrious purposes, eventually different by a
scalar factor. Therefore, the same decompositighesentually inverse matrix can be used for all
tasks involved in approximation based algorithms.

Beside the different scalar factor in transformatioatrix, there may be differences in the
shift vector in affine transformations (definingenter of a transformed region).

A general affine transformation (Figure 2) is defirby:

x=F(X)=AX+s, (108)

88



8. Appendix: formulae for WLS and MLS IOptLib UWseManual

and its inverse transformation is (Figure 10)

x=F*(x)=A"(x-s). (109)

'_(Dl

>t

Figure 9: Affine functionF that maps n unit ball into an ellipsoidal domagémtered around
s.

X

Figure 10: Performing inverse affine transform to change seftipsoidal region in the
space into a unit ball.

8.3.1.1 Gradient of a function of transformed parameters

89



8. Appendix: formulae for WLS and MLS IOptLib UWseManual

When we have some functioﬁ(x) defined on the domain of the affine transformation
and we derive from this function a function thatsamn the codomain of transformatiBnsuch that

f (X): f(F_l(X));)N(:F_l(X):A_l(X —S) , (110)
then, according to (134), the gradienf &f*
O, f(x)=A" 0, f(x) =A™ 0, f (A (x -s)) . (111)

This situation is the most common one for usingcfioms of affine transformed co-
ordinates. Usually, we define the transformafiosuch that we perform the operation of interest in
the codomain ofF, such that its domain represents a kindefdrence domain (or region or space)
and its codomain represents fiig/sical domain. The reference domain usually serves for definitio
of templates for specific operations (such as senmgpbr to define some template functions (such
as weighting functions).

This is particularly useful when the operations@tta restricted domain or when functions
of interest have some characteristic domain ofréste(such as domain when the function is non-
zero or has a significant value, as is the cage wétighting functions). In such cases, we can @efin
template operations and functions uniformly for sospecial domain of interest, and derive actual
operations or functions that we need in the physigace by affine transformation of co-ordinates.

Affine transformations can be used for such purpeisen it is easy to define operations or
functions on a unit ball, and when the limited cegof interest is bounded by a hyper-ellipsoid with
an arbitrary center. Indeed this if the most gdneese that we need in approximation-based
optimization for sampling, definition of weightinfignctions, and definition of the restricted step
constraint.

If we have, in the contrary, a functioh(x) defined on the domain of transformatiérand
we derive from this function the equivalent funation the domain df, such that

f(x)=f(F(x));x=F(x)=Ax+s , (112)
then gradient off is

O, f(x)=AT0, f(x)=ATO, f (Ax +s) . (113)

8.3.1.2 Implementation of affine transformations in 1OptLib

! Note that domain and codomainffcan have different dimensions, but usually theetisions will be the same. In
the case of different dimensions, the transfornmaismot invertible, which significantly limits itsse.

90




8. Appendix: formulae for WLS and MLS IOptLib UWseManual

Implementation of the affine transformations in tBgtLib accounts for efficient treatment
of special cases where the transformation matrigirigple scaling or a diagonal matrix. It also
allows for multiplication of some matrix by a diagd matrix or a scalar factor. The matrix A can
be written as

A =c,cDA ; D =diag(d) (114)

Multiplication with diagonal matrix:
In general, multiplication with a diagonal matrsxnot commutative:
[AD]i=a;d;, [DA]ij=aydi
. Efen if A is symmetric, its product with a diagonal matiixs not commutative. In this case
(DA) '=AD.

8.3.1.3 Sampling

The simplest sampling is uniformly distributed ramdsampling. On an arbitrary ellipsoidal
domain, we usually perform sampling that is uniflyrdistributed on its inverse image — the unit
ball. Sampling points are therefore specified onné ball and then transformed to the actual
sampling region by affine transform:

X =F(%)- (115)

Sometimes we try to improve sampling by solvingpacific minimal particle potential
problem (in order to maximize distances betweenpdiam points). Usually a number of existent
(static) pointsx, are considered in such a problem beside the névtspee want to position in an
optimal way. In this case, we first inverse transfox , solve the minimal potential problem for

new sampling points on an unit ball, and transféhm calculated sampling points to the actual
sampling region:

X =F*(x )OI
{x} =arg {kal}n(P({i,} { )”(k})) (116)
x, =F(x,) Ok

8.3.1.4 Weighting functions & calculation of weights

Typically, weighting functions in a multidimensidnapace are derived from one
dimensional functions of an argument that is a nofrthe inverse transformed vector. In such a
way, we obtain functions whose iso-surfaces aipselids.

91



8. Appendix: formulae for WLS and MLS IOptLib UWseManual

)= (I ()= £ I (-9, ) (117)
cw(x) = t(|F2 (<), )o(IF(x)], )=
f'(Al(x—s))AZ‘?(;(_XS)‘S) | o

w(x)=f(]a*(x-s)|) (119)

We have
()= (A (x-s)) A5 Lo 4 (120)

|A7(c-s)|

We have taken into account

71(609)= 1(9() 78(). Bl =i+

Of(A(x-s))=ATOf(x)

(121)

x=A(x-s)

If A is a symmetric real matrix then we can wteUSU', whereD is a diagonal matrix
whose elements are eigenvalueg\pindU is orthogonal matrix whose columns are correspundi
normalized eigenvectors.

Another way to derive expression (120) is to coasithe weighting function in the
reference co-ordinate system, i.e.

w, (%)= f (|1, ) (122)
and derive the actual weighting function by transfation of co-ordinates, i.e.
W(x):WO(F’lx) :WO(A’l(x —s)) (123)
Then we have, according to (134):

O, w(x)=A™" DRWO(A’l(x —s)) (124)

92



8. Appendix: formulae for WLS and MLS IOptLib UWseManual

According to (140),

y_df(t) X
O, w, (%)= — (125)
TR B F
and then
_ A—1T A—l _
w(ean 4] x _df AT A s)) (126)
dt| %], dt t=fatxs)) [~ (x _S)Hz
8.3.1.5 Restricted step constraint
Restricted step constraint is defined as
_ 2 _ 2
[F (), =[Aa™(x-9), <1, (127)
therefore the corresponding constraint function is
o (x) = F*(x)], ~1=[A(x-9)|, -1 (128)
Gradient of the constraint function is therefore
Oc, (x)=2A"T A (x -s) (129)
Ojax|} =2ATAx . (130)

8.4 Formulas for function gradients

Jacobian matrix of a vector functiogh ™ - 0", :

93



8. Appendix: formulae for WLS and MLS IOptLib UWseManual

Fom -0 F=(F,F,...F,)
OF,(x)
J(F(x))= SR () RGNS a;)fx) i=1..n,j=1..m (3D
7. (x) |
Gradient of composition of scalar functions:
of (g(x)): f'(g(x)) Og(x) - (132)
Gradient of composition of scalar and vector fumeti
71 (9(x) =(0a(3) 0 (9], (133)
where
D(g(x))=3(a(x)
is the Jacobian matrix of g.
Gradient of a linearly transformed function:
0, f(Ax)=ATOf(t)_, (134)
Gradient of norm of a vector is
OJx|, ==, x#0 (135)
Xl
and from this it follows
O] Ax |, =AT ] :XXZ X %0 (136)
and then, taking into account (132),
ot (| ax],) = AXHZ)ATﬁ,X £0 (137)
2

Gradient of a square norm is

94



9. Appendix: Common types and related modules tUibJser’'s Manual

Ofx],” =2x (138)
and therefore
O|Ax|. =2ATAx . (139)
From (135) and (132) we also have

X
.

df(t)

711, )= 25 art)

O, ==

i (140)

=[x, =,

9 APPENDIX: COMMON TYPES AND RELATED MODULES

9.1 Introduction

9.1.1 Comments on ANSI C

ANS C is a highly portable, plain, basic and logicalthigvel programming language. It
does not provide or enforce many artificial constsuabove the machine level (there is no explicit
object oriented programming or OOP support, white gan still keep programming style that is
close to these concepts), but still provides wilahecessary for high level programming. This
includes control flow constructs necessarydouctured programming, dynamic memory allocation
and definition compound data types for combining heterogeneous data in arbitrary reyeal
packages and easy addressing, passing and accewdividual parts or data conglomerates as
whole. Through function pointers that can be kepstatic variables and function arguments, data
and functions may be treated in more unified waiglisas it is common in OOP).

Since C does not enforce any particular programrsigte and it provides relatively low
level but still highly human-readable access talvare capabilities, the code can be made either
very efficient or with interfaces exhibiting higevels of abstraction or encapsulation. Since C is
very commonly used (free and commercial compileesavailable on almost all platforms), there
are also well established procedures for connecthgode with software coded in other
programming languages (although this may be vesatfg@in dependent). With other words,
programming a library in C lets a lot of freedondagenerality, and this is the main reason for
choice of this language. If it turns very benefic@ have a library with the same functionality as
“IOptLib” in another programming language, this sltbbe most entirely solved by building an

95



9. Appendix: Common types and related modules tUibJser’'s Manual

interface library in that language. This would dealminterrupted development of the library and
continuation of its integrity.

One of the most typical and for many people mosteafeature of programming in C is that
one must explicitly handldynamic memory allocation as one goes along. Unless in very simple
cases, this also means that memory must be explieileased when not used any more (there is no
implicit allocation and built-in garbage collectjoriThis requires some additional programming
discipline. Lack of discipline can lead to seriotreubles such as memory leaks (software
accumulates allocated memory without de-allocafieépasing) it when not needed any more, and
can finally spend all available resources, whicdieto crash of the program or the whole system),
or memory access errors. The latter typically osghen data storage that is attempted to be used
has not been allocated before or not enough spEsbden allocated for the data, or when we try to
access (read or write) memory that has already loeeallocated (released). Another common
memory handling error is that one sets by mistake pointers to point to the same memory
location, but they should logically represent diéfe data. Storing one piece of data therefore
unexpectedly changes another.

9.1.1.1 About pointers in C@

How to deal with pointers in C is the matter of Wwirng the programming language. It is not
intention of this document to teach programmingegplain syntax rules of some particular
language. However, understanding pointers is smitapt for using the library, and many people
using other programming languages are so unfamifitrthese concepts that it may be appropriate
to include a brief recapitulation of the subject.

There is nothing mysterious about pointers — theyjast pieces of data of particular kind
that carry some information, exactly the same ambars. They can be stored in variables just as
other pieces of data. Difference is that the infation they carry is somehow more abstract and
related to the machine architecture rather thathéomodel and procedures we want to build with
our codePointers contain memory addresses, which can be used to access other kinds of tiata t
resides in memory during program execution. Balicalll data that are manipulated by the
executed program are contained in memory at some, tbnly that referencing the corresponding
memory locations is usually performed indirecthyt nhrough addressing memory but through
names of variables. On the machine level, datasacstill reduces to addressing memory locations
and transferring pieces of memory contents, sirar@ables are just an artificial construct to aid
programming.

One of the main reasons why to deal with pointsrdoi enable dynamic allocation of
memory. With this concept, we don’t need to knovadtvance how many data will be treated and
how much memory will be needed to perform a givehas operations. At any point in the code,
we can ask the operating systenmatimcate an additional piece of memory of a specified $ae
our use, use this peace of memory through its addend later (when the memory is not needed
any more) tell the system tie-allocate (release) this piece of memory, so that it can be used for
other purposés For example, we need to statistically analyze dead from disk, but don’t know
in advance how many data there will be. Normallg mever operate with particular memory
addresses (because this task is taken over byprating system), but we are still aware that the

! Some languages enable this implicitly, without tieed to operate with something thought of as mgaddresses.

96




9. Appendix: Common types and related modules tUibJser’'s Manual

value (content) of the pointer represents the add(ee. position in the memory) where a given
piece of data is located.

Computer memory can be imagined as a contiguoushamtgogeneous block of equal
storing unit$, therefore different addresses (locations) areivatgnt. However, similarly as
programming language distinguish between data wiitdifferent type$in order to assign them
human understandable meaning, different types iotgrs may be declared according to the type of
data they are intended to point to. Let us congiaefollowing code:

Example 6:

int a=1, b=2, c;

int *ptr1=NULL, *ptr2=NULL;
ptrl=&a;

prt2=&b;

*ptri=44;

c=*ptr2;

printf(“Value of a: %i.\n",a);
printf(“Value of c¢: %i.\n",c);

Execution of the above code generates the followirtgut:

Value of a: 44.
Value of c: 2.

Integer variablea, b andc are defined in the first line, arsdandb are initialized to 1 and
2, respectively.

In the second line, two pointers to integer data defined, namelyptrl andptr2. This is
done by use of th& (de-reference) operator, which means “take the value the variable poiats t
The declarationnt *ptrl should be read as »define a varigiid such tahtptrl (i.e. the
value that ptrl points to) is of typet (which denotes a signed integer in C)«. Both mosare
initialized toNULL, which is a pre-defined value for andefined address in C. If the value of some
pointer is NULL, then one knows that it does noinpto a valid location in the memeory, and may
not refer to what that pointer points to.

In the sequel, addresses of variatdeandb are assigned to pointer variablgsl and
ptr2 , respectively. Thaddress operator & is used to obtain the storage address, and ttesrstat
ptrl=&a; means “get the address of varialsleand store it in the variablptrl ". After
assignment, poiter variables hold the addressteeqgfortions of memory where the variakdeand
b are stored. The actual addresses depends on ni@leq linker, operating system and are not
important for the programmer. It only matters wtlata is addressed by the pointers.

The statemertptrl=44;  stores the number 44 at tlogation pointed to by ptrl . Since
the type of ptrl is »pointer to int«, the valuetisated as signed integer (which affects the bit
representation and length of data piece that ifemrito the memory). And since the variablés
kept at the location pointed to ipyrl (because of the assignemeitl=&a; ), this assignment
also sets the value afto 44. Thedereference operator * is used to refer to what a pointer points to.

! Byte is usually taken as the basic unit on thelle¥ programming language.

2 While on the machine level, all information is fammly represented in as a binary sequences oéeifit lengths. On
this level, meaning is assigned to the data onlgugh operations used to manipulate the informaféog. by integer
addition of two integer numbers).

97



9. Appendix: Common types and related modules tUibJser’'s Manual

Let us mention again that the declared type ofpibiater defines how the dereferenced storage is
treated. In this case it is treated as data of itype, which affects the length of the data and the bit
representation of the value.

The statement=*ptr2  takes the value pointed to py2 and assigns it to the variable
c. Since ptr2 points to the location where varidblis stored, and the value of this variable is 2, 2
ia assigned to.

Since the point where the address of a variabéssggned to a pointer, referencing variable
or referencing what pointer points to is the sahmegt Therefore, whatever is assigned to a variable
will affect the value referenced through the pairted vice versa.

The above example with corresponding comments doésshow the true reasons why
pointers are useful. There are two basic reasarthéb. The first one is dynamic allocation, and th
second one is the possibility of passing (e.g. ubho function arguments) arbitrarily large
conglomerates of heterogeneous data by passinigke giointer. Let us explain dynamic memory
allocation first.

Dynamic allocation of arrays:
Consider the following code:

Example 7:

void printsumseries (int n)

int i, j, *tab=NULL;

if (n<1)

return; /* function does nothing if n<1 */
tab=malloc(n*sizeof(tab)); /* allocation of tab le */
tab[0]=1; /* initialization of the first element */

for (i=1; i<n; ++i)

tabli]=0; /* initialization of element i+1 */
for (j=0; j<i; +4j)
tab[i]=tab[i]+(i+1)*(j+1)*tab[j]; /* add ter m j+1 of the sum */

printf(“The first %i elements of the series:\n");
for (i=0; i<n; ++i)
printf(“%i: %i \n”, i+1, tabli]);
free(tab);
tab=NULL;

}

printsumseries(4);

In the above code, a function is defined for caltioh and printing of the first elements of
the series defined by

51:1; Slz_l(i+j)*Si,i:1,...,n.

i

98



9. Appendix: Common types and related modules tUibJser’'s Manual

The number of terms to be printed is passed asgument of the function. We can see that
for calculation of any term of the series, we néedhave all previous terms, therefore we need a
table of numbers for storing these terms. Sincel@rét know in advance how many terms we will
need to calculate and print, we also don’t knowlémgth of the auxiliary table necessary to store
the evaluated terms of the series. We will sohis By dynamically allocating the space for the
table each time the function is called.

We define the auxiliary tablab as a pointer tont . Then we allocate the space for
integers (exactly as many as we need) and sebt#ietaddress of the beginning of dynamically
allocated space. This is done by the statentaebhtmalloc(n*sizeof(*tab)); . The
standard functiomalloc instructs the operating systemalbocate a contiguous memory block of
a specific length (specified as an argument that defines the leingthumber of bytes) for the
program use. The functioreturns the address of the allocated memory (which we assign to the
pointertab ). In order to allocate just enough space necedsarstoringn integers, the operator
sizeof is used that returns tiseze occupied by a data unit of a given data type (which is system
dependent). In order to determine the size of glesidata unit, theizeof operator takes as
argument either theame of the type or reference to a variable of a given type for which the
occupied storage size is requested. We used tieg, lia¢. we passtab as argument, therefore the
operator returns the size of a data unit pointellytthe pointer tab (which is the size of type ).

The advantage of referring a variable insteadtgpa is that if we later decide to change the type
tab e.g. tolong * (integer typdong requires more storage space ti@n on some systems)
then the size will still be correctly calculatedthgut changing the code (if we stated the type, we
should change the argumentsigeof according to new declaration).

After allocation of a memory block for the tableréy) of n integers, calculation of the
series terms is performed. Each calculated terstoied in the allocated array. Individual numbers
(element of the array) are referenced through thietgr that points (holds the address of) to the
beginning of the array, since pointers can autaratyirepresent arrays in C. Reference to elements
consists of the pointer name followed by indexquare bracket€lements of arrays are counted
from O rather than from 1, therefotab[1] refers to the second integer element of the array.

Figure 11 schematically shows the situation in mgnadter allocation of the table and
calculation of the first four terms of the seri&%emory is viewed as a contiguous block of bytes,
which are denoted as small squares. It is assuh@dypeint is four bytes long, therefore the
allocated block of memory (shaded in yellow) iskydes long. We can imagine this block divided
to smaller blocks of 4 bytes, each of which wilbrst one integer number. The address of the
beginning of the allocated block is assigned topbiater variablgab , which is stored in memory
at some other location (unrelated to the locatibthe allocated memory block). We thus say that
tab points to the allocated memory block. Sitae has been declared as pointemto , we can
use it to address successive integer elementsedrtiay. In the figure, reference to the individual
integer members of the array (the allocated blaeck)denoted, together with the calculated values
(terms of the series) that are stored in theseeaiésn

After calculation, elements of the series that badn stored in the array are printed out.
After this, the array is not needed any more andleased (de-allocated) by the standard function
free . This function instructs the system that a givesrmary block, which had been dynamically
allocated before, is not needed any more. The mystteases the allocated memory, which can then
be re-used for other purposes (e.g. it may be atitoent part of another dynamically allocated

99



9. Appendix: Common types and related modules tUibJser’'s Manual

block of memory reserved at another point of progexecution). Avalid pointer to the allocated
memory block must be passed fiiee . This functionmay not be called with a pointer argument
that is not the address of dynamically allocateanony, and it may not be called again with the
address of the same memory block that has alreagly keleased.

As a good programming practice, we set the potater to NULL after de-allocation of the
memory block it points o This habit is good for preventing attempts toemscthe memory that
had been released or attempt to release this meagayn (which would result to disastrous
errors§. A pre-defined value NULL is used to indicate thatinter does not point to a valid
location. When we use a pointer in a portion ofecttht is much isolated from the parts where this
pointer is otherwise manipulated (e.g. in some tioncto which the pointer is passed as argument),
we can check the validity of the pointer by chegkihether it is NULL. This strategy will only
work well if we will strictly set all pointers thatre not assigned valid addresses to NULL, which
includes points at which the allocated memory iy pointers is released.

After execution of the last line of code, where fln@ction is called with argument 4
(number of terms to be printed), the following auts generated:

The first 4 elements of the series:
1.1

2:3

3:19

4: 156

tab[0] tab[1] tab[2] tab[3]
:S]_:l 232:3 25‘3:19 254:156

tak

Figure 11: Memory scheme after allocation of space for aayaof 4 integer numbers and
calculation of the first four elements of the sgiExample 7).

Notes on pointer arithmetic and addressing arrays:

! Although in this place such caution is not realécessary, since the memory is de-allocated jistédéne end of the
scope of the variable that points to it and it ity sure that we will not do anything with thisipter after de-
allocation. At least theoretically, we could extehé function definition by addition of some insttions at the end of
the function. In this case, setting the pointeNtdLL could turn useful, since we could check thénper and prevent
access to the memory that has been de-allocated.

2 pfter calling free, the pointer that is passedagiment does not change and therefore still paintise same location.
However, the memory at that location is releasetliis no longer valid for the program to accéss imemory.

100




9. Appendix: Common types and related modules tUibJser’'s Manual

As mentioned, pointers with specified type can enattically be interpreted as reference
points of arrays of elements of a given type. Itéssidered that such pointers point to blocks of
memory containing a number of contiguously arrangkminents of a given type. For example,
tabli] in the above place refers to the elemedtof the array of integers, thought to begin at th
place pointed to byab . Addition of 1 follows from the fact that elemerdagarrays are counted
from O.

The first element of the array pointed tothk can be equally well referred to by using the
de-reference operator *, i.e. as*tab , or by using the indexing operatdr, i.e. astab[0] . On
basis of thispointer arithmetic or addition and subtraction of integers is defified pointers in
such a way that addition of 1 is identical to imemt of the pointed address by the size of the
pointed data type. Therefore, the following twoerehces both refer to identical piece of data
stored in memory

tabi]
*(tab-+i)

When referencing arrays through pointers, we maiet tare that we don't reference the
elements whose indices exceed actual array bolings.if address of a variab&eof typeint is
assigned to the pointéaib , we may not refer to the second element of thayguointed to by tab,
i.e.tab[i] , since only a single integer is stored at a lotatirhere the pointer points. Similarly,
we may not refer ttab[n]  in the function defined in Example 7, becausesibe of the allocated
memory whose starting address was assign to tahlyssufficient forn elements. The compiler
does not control whether we refer to elements bthe array bounds because there is now way to
establish that. We can, however, declare pointeabi@s that are intended to point to arrays of
fixed length, which is done as follows:

int itab[3];

By the above code, a pointer to an array of thnéegersitab is defined. The space for
array is allocated right at the definition pointhase the size is fixed and known in advance.if th
case, we can not refer to an element that exceedsaunds (this would generate a compiler error,
e.g. itab[3] or itab[10] ) or assign some other address to the array (stgtements
itab=&l;  oritab=tab; are illegal). We can only assign new values tonelsts of such table
or get their values, e.g.

itab[1]=tab[1];
tab[2]=itab[1];

Pointers to compound data units:

In C, we can combine arbitrary data units of ddfertypes into conglomerates called
structures. The point is in creating objects that can represemplex things and referring to these
objects as single units, which highly simplifiesmipaulation and putting things together.

Pointers play two roles in this concept. One is d@hdity of dynamic extension of data
conglomerates (e.g. dynamically allocated arrayh wariable size, and some pieces of data may at

! This also explains why array elements are coufnted 0.

101




9. Appendix: Common types and related modules tUibJser’'s Manual

different stages either be allocated and carryuliseformation or not). The other role is passing
information to different execution levels (e.g.ftmctions, which do a specific job and either use
complex data or generate complex results) by pagse. actually copying) between these levels
only small data pieces (pointers to the structudath) rather than complete data. A simple
demonstration of both roles is given by the definitof vector andmatrix types Section9.2).

The void * type:

ANSI C defines the void data type (meaning unspaifnone or any), which can only be
used as an imaginary type of return values of fonstthat don’t return anythingr to declare
pointers for which the type of the data they pdis not defined. Such pointers can be used to
point to any type of data, and are useful e.g.digfining container objects for carrying different
types of data (such as stacks, Seetion9.3).

9.1.2 Followed programming rules

We will not explain any details about memory hanglin C. We consider this a pre-
requisite to use of the library, and users can wibrsy book on C for this purpose. However, we
would like to mention some rules of good practicat thelp keeping programming discipline and
the rules that mainly apply for this library.

Sometimes quite complex data organization is necgss order to keep things general as
well as efficient and easy to use. For the taskeimory organization, appropriate compound types
are defined. Usually these will be structured typéth pointers to them declared as separate types.
Pointers will mainly be used rather than structutesmselves. Data structures may be highly
complex and nested several levels (one data typeamatain pointers to other data types, which
again contain pointers to other data types, et@rtter to manage complexity, for each structure
type there will be basic operations defined, whitlparticular includes storage allocation and de-
allocation.

Allocation and de-allocation should always be mhgéhe provided functions. This means
that exact definition of a data type may change @. compound data type may be extended), but
this will not affect correct memory handling beoauke narrow set of basic operations will be
updated almost simultaneously.

It is a common rule that every dynamically allochpgece of data must have a unique basic
handle, i.e. a pointer to the data through whiclis iellocated or de-allocated. Other auxiliary
pointers may point to the same data, but this bl merely used in oder to assist access to
individual parts of the data in the case of nepi@dters and when type casting is necessary.

As a good programming practice, all pointers tha stended for basic handles of
dynamically allocated data should be initialized\tdLL. Whenever such pointer is nod NULL, it
is considered that it points to allocated data eeml therefore be de-allocated when the data is not
needed any more. It is a good practice that the thedle is set to NULL immediately after de-
allocation. This rule can only be skipped when Higecation is made right before the end of a scope

! In some language such functions are referred tprasedures (which do something but do not retuslae), in
contrast with functions, which do something andmetsome value.

102




9. Appendix: Common types and related modules tUibJser’'s Manual

of the pointer variable, which will therefore no¢ laccessible shortly after de-allocation of the
pointed data.

Functions for allocation and de-allocation of coexphested types must be implemented
hierarchically in such a way that the above ruloibwed strictly. De-allocation functions should
take address of the data pointer rather than thtgratself as an argument. After de-allocation
(usually by using the standdfrde()  function, the pointer will also be set to NULL.tife data to
be de-allocated contains pointers to other dyndipiedlocated data structures, these will be de-
allocated first.

Some data types defined in this library (suchsteck , see Subsection9.3) act as
containers that can hold pointers to different sypé data. Objects of such types may be used in
both ways — to hold auxiliary pointers (e.g. to amkrations such as sorting) or to hold many basic
handles of data of the same type. Therefore, twygswé de-allocation are supported for such data
objects. One way is de-allocation of merely thetamer itself, without de-allocating its elements
(because their basic handles are somewhere else}hér way is de-allocation of the contained
elements followed by de-allocation of the contaiolgject. Since elements of such container objects
are represented as pointers of indefinite tywwed(*), for the second method we need to provide a
function that de-allocates individual elements.

9.1.3 Work in multi-thread environment

A process can have several parallel execution threads. Timesads share the same process
data, but they execute in a parallel manner, wiscim the same way as distinct processes. The
system alternately assigns chunks of processing timndividual threads of the same process in a
similar way than to other processes that run semelbusly at a specific moment. Running a process
in parallel threads have many advantages. For ebeanmyghen a given thread of numerical
simulation is performing calculations, some otheead can simultaneously perform processing of
already calculated results and can provide theipljcal representation to the ifser

The main problem in execution in multi-threadedimegyis synchronization of data access.

For example, as the simulation thread proceedsait delete the results older than the past three
iterations. If the thread for graphical represdatatattempted to access these results after the
simulation thread has deleted them, an memory a@resr would appear.

As there are many different examples of almostitable use of parallel threads, there are
also very different ways aharing data between multiple threads. However, we can deforaes
general rules for multi-thread environment. Thetfiule is that only one thread may owe the main

L A process is an image of a program in memoryithatade by the system when executing the progragether with
the corresponding data. In multi-tasking environteenany processes are executing in parallel, amddame program
(an executable file on the disk or other storaga) loe carried out by several processes in the same(e.g. several
identical simulations with different input data daarun at the same time).

2 This function could be implemented serially, dag.inserting chunks of code that handle user requasd graphical
representation between the code that performs latilmn. However, this would be much more complidatand in
more complex systems, practically impossible) tplament. Execution in parallel threads enablesedfit tasks to be
implemented independently while they are still exed in parallel within the same process and tloeeehave the
ability to access the same data.

103



9. Appendix: Common types and related modules tUibJser’'s Manual

handle of any dynamically allocated object, themefde-allocation of that object can only be
performed in the main thread. The next rule is thiate access to the data must be serialized to
prevent unexpected change of the data by anotteadiwhen one thread is using the data.

One measure to insure proper synchronizatidacking of the data when it is used, which
prevents simultaneous access of the locked datpabgllel threads. Locking is performed by
integer locks whose state defines whether the gporeding data can be accessed or not. Locking
and unlocking is performed by macras threadunlock  and m_threadlock  (defined in
sysint.h ; see Example 8). Both macros take the lock aseegt The first macro waits until the
lock is released and then sets the lock (locksl#ta). When a lock is set, an attempt to lockoitrfr
another thread will block until the lock is reledd®y the thread that had set the lock. The second
macro releases the lock that is set by the firatrmdt is the responsibility of the user timacros
are strictly called in pairs lock/unlockwith code that deals with locked data put betwten
matching calls) and that thecking is never performed successively within theme thread unless
unlocking is performed betweefthis would cause blocking of the thread forev@ie most
common error is that locking is repeated in a nested call, i.e. it is called in a function that is called
by the function that performs locking (or in anitrdyily deeper level). A condition for data lockin
to work is that it is used strictly and consistghtl

Macro m_threadlock  that sets the lock will block execution until theck that it is
setting is released (if no other thread has lo¢kedsame lock then the lock is set and execution of
the thread that called the macro is continued imately). After the lock is set, eventual calls to
this macro would block until the lock is releasegthe call tom_threadunlock . If several
threads attempt to set the lock at approximatety ghme time, only one of them will succeed
immediately while all others will block (wait) uhthis thread releases the lock (between that, the
thread that set the lock would usually perform sdasks on the data that is related to the lock).
After the lock is released, another thread wilkheceed to set the lock (but only one, again),avhil
other threads will continua to block until that éhd releases the lock, and so forth. Locking
therefore provides means of serializing otherwiseallel execution of code at given critical
moments when shared data needs to be accessed.

Example 8:locking of data for synchronizing parallel threads

int lock=0; /* initialization to O is obligatory * /
void *data;

... I* prepare data */

m_threadlock(lock); /* set the lock */

! This means that all functions that may eventuasdly the same data during their execution, ensutedking that the
data can not be accessed during execution ofaritimction code by other threads that could ewvahtumodify the

data. All functions that modify the data must Idtlbefore doing that, which ensures blocking utii#g lock that is
eventually set by another threads is released. Mkans that either the data is modified only afiertasks performed
in another threads that would eventually use tha dee finished and release the lock, or it is rfiiedibefore that (i.e.
function in other threads block until the modificat of data is finished). Locking mechanism doestitself prevents
access to data by parallel threads, it only wofksther threads use the same lock for checking @danching access
rights for the data.

104



9. Appendix: Common types and related modules tUibJser’'s Manual

... I* Do something with data; because the lock is set, other threads that
would try to set the lock, would block until the lo ck is released
*/

m_threadunlock(lock); /* release the lock, now som e other thread that has

eventually set the lock will continue execution */

Different handling rules for locking data:

More complex systems that handle a large numbeglafed tasks usually have some static
data that define the state of the system and amdldw by system utilitiés In order to prevent
unsynchronized access, data may be locked on $deeeds. Sometimes there is a lock for the
whole systems and several special locks for pdaticemaller parts systems. In order to prevent
conflicts by nested access to the same lock, ittrhasexactly defined which functions may set
which locks. The main lock for the whole system t&nonly accessed by basic utility functions
that are provided in the main module of the system.

Locking individual data objects may be performed through the locks that are pathe
object (i.e. fields of the structured data typgpidally namedock ). In order to prevent nested
locking conflicts, there may be separate locksdimups of different kinds of task¢hat can be
performed on a given type of data objects. Sometiinie agreed that locks are not set by the lower
level functions, but must strictly be set by higherel functions.

Probably the best practice is usiingctions with twofold locking operation. We can provide
utilities that work with data objects of a givempgyin such a way that the caller can indicate tiinou
an appropriate function argument whether the wtflinction should lock the object or not. Then
these functions are called in such a way that @yt lock the object if the lock has already been
set by the calling code, and such that they loadsewhere. Use of twofold locking operation is
illustrated by Example 9.

Example 9: Using twofold locking mechanism on linear transfation data object.

lintransfdata Id;
Id=newlintransfdata();
... I* prepare the data, install it in the system */

m_threadlock(ld->lock); /* lock the object */

... I* use the data object */

my_func(ld,0); /* call a function that performs op erations on data object,
indicate by the last argument that the function sho uld not lock
the object because it is already locked */

m_threadunlock(ld->lock); /* unlock the object */

aisplintransfdata(&ld); /* when not needed any mor e, de-allocate the data */

/* Definition of function my_func: */
void myfunc(lintransfdata Id, int dolock)

{

! An example is registration system of optimizatwnblems, Section 7.1.
2 Don't be mislead by “groups”. There may be onlyedack and two groups of utilities, those that nhagk the data
and those that may not.

105



9. Appendix: Common types and related modules

tUibJser’'s Manual

if (dolock)
m_threadlock(ld->lock); /* lock the object if
corresponding argument */
... I* perform the task (use data on Id) */
if (dolock)
m_threadunlock(ld->lock); /* unlock the object
within this function */

this is instructed by the

Id if it has been locked

9.2 Vector and Matrix Operations

Vector and matrix types are declaredvét.h andmat.h in the following way:

typedef struct _vector {

intd;  /* dimension (num. of comp.) */

double * v; /* table of elements, STARTS WITH 1
}* vector;

typedef struct _matrix {
int d1,d2; /* dimensions (num. of rows and n
double ** m; /* table of pointers to lines, CO
double *comp; /* pointer to components, 0 offse
*/
}* matrix;

Only matrix and vector elements may be set dire@iynensions should always be set by
the appropriate library functions for allocation w@r-allocation (resize) of vectors and matrix

1*/

um. of columns) */
UNT FROM 1! */
t; NEVER ACCESS DIRECTLY!

objects. Dimensions and components my however ta@naa (read) directly.

Basic operations such as memory handling are dkfinethe header filewec.h and

mat.h . Vector components are accessed through the(fie)>v , which is an array of elements

of typedouble. Matrix components are accessed through the field>m, which is anarray of

pointers to arrays of elements of tymeuble. When a vector or a matrix of given dimension is
created (allocated) the storage for componentsllisaded simultaneously. Array pointers are

decremented by one after allocation, theref@ements are counted from 1 (not from 0 as it is

common in C).

9.2.1 Allocation and access to elements:

Let us have the following code:

matrix A=NULL;
vector b=NULL;
A=getmatrix(5,5);
b=getvector(5);

106



9. Appendix: Common types and related modules tUibJser’'s Manual

Thenb->v[4] refers to the fourth element of vector b alkdm[2][3] refers to the
element of matrix A in the second row and the tlsimtbmn. Attempt to accessimig>v[0] orA-
>m[6][1] would be an error (because elements are counted Ir and because A has been
allocated with only 5 rows). Functiomgtmatrix andgetvector were called for matrix and vector
allocation. Both functions require dimension(s)aagument(s) and return pointers to dynamically
allocated storage that can hold a matrix or a vesith specified dimensions:

vector getvector(int dim);
matrix getmatrix(int dim1,int dim2);

Most of the derived data types defined in the liptaave similar functions for creation of
objects of these types. Majority of these functialigcate the data that can be allocated according
to specified information and return object pointeveich must be assigned to chosen basic handles.
Basic handles can be explicitly defined variableslements of another complex types such as
stack (Subsectior®.3).

We can set elements directly, e.g.

A->v[2][3]=10.5;
b->v[1]=0.23;

9.2.2 Reallocation and deletion:

We may not set dimensions directly, e.g. the staremA->d1=6 "is a hard mistake
because it changes matrix dimension without recating storage for its elements. Resizing of a
matrix can be done e.g. by

resizematrix ( &A, 4, 6);

By this call, matrix A is resized to hold 4 by Gelents. Address of matrix basic handle
(pointer to the data through which allocation isdelamust be provided as the first argument,
followed by the first (number of rows) and the setaimension (number of columns). Values of
original elements should be stored before the irggit we don’t want to lose them. Re-allocation
can be done in a longer way, by first deleting étleeating) the matrix and then allocating it with
different dimensions:

dispmatrix ( &A);
A=getmatrix(4,6);

Resizing operations are defined for many data types intgéndénold a variable number of
related elements. The first argument is usuallyectbpddress (address of basic handle must be
provided, because the pointer itself may be changed the rest of the arguments define the new
size (or dimensions) of the object. For matriceze & defined by two dimensions, number of rows
and number of columns, respectively.

107



9. Appendix: Common types and related modules tUibJser’'s Manual

De-allocation (deletion) operations are defined for almost atived data types. The
functions usually have suffixdisp” (that stands fordispose) followed by the name of the
corresponding type (matrix in this case). Usudflg bnly argument is the address of the object
pointer. The deletion operations release all theadyically memory occupied by the object (by
nested deletion calls, if necessary), agtcbbject pointer to NULL.

9.2.3 Copying and other operations:

Another basic operation defined for many derivethdgpes is copying. We can create
copies of matrix A in one of the following ways:

matrix C1=NULL, C2=NULL, M;

matrix A=NULL;

A=getmatrix(5,5);

A->m[1][1]=1.1; ... /* Assign components of A */
C2=getmatrix(2,50);

Cl=copymatrix(A, NULL); /* case 1*/
M=copymatrix(A, &C2); /* case 2 */

The functioncopymatrix  is declared as

matrix copymatrix(matrix m1, matrix *m2);

In the above code, new matrix pointers C1, C2,Mrate defined. The first two pointers are
intended for use as basic matrix handles and arefdre initialized to NULL, while M is intended
just as auxiliary pointer, which will point to oé the copies of A, whose basic access handle will
be assigned to C2.

The copymatrix  function requires two arguments, the matrix tocbpied (represented
by a pointer of typenatrix ) and the address of the matrix which the origisalopied to. In any
case, function returns the pointer of the copyhéf second argument is NULL (case 1 in the above
code) then a new matrix is dynamically allocated &S pointer is returned. In this case, the
returned pointer must be assigned to some variaiause it is the only pointer to the dynamically
allocated matrix where the original of the copwtisred. If the second argument is not NULL (case
2 in the above code) then copy is stored at thatilme pointed to by this argument. If the second
argument points to a NULL matrix then the matriallocated with the appropriate dimensions and
then components of the first matrix are copiedh® newly created one. If the matrix is already
allocated, then consistency of dimensions are @ukfikst. If necessary, the matrix pointed to by
the second argument is re-allocated to have cemsistimensions, and then elements are copied.
This is the case in the above example where a obpyatrix A is stored in matrix C2, which has
been allocated with different dimensions than AteAthe operation, C2 will point to a matrix with
the same dimensions as A, holding its copy.

When the second argument is different than NULE, réturned pointer of the copy may be
ignored, since the matrix is copied to the locapecified by this argument. Sometimes it is still
useful to store this pointer, e.g. to make the s&t¢e matrix elements easier (this is useful eleerw
the address specified by the second argument refeasfield of some object of a complex type,
possibly nested in other objects).

108



9. Appendix: Common types and related modules tUibJser’'s Manual

Let us mention that the second argument may beeaddif the first arguments. Such call
does not have any beneficial effect, but this gmltsi may be used at other unary or binary
operations in order to save memory.

9.2.4 Binary operations:

Copying can be considered a simpl@ry operation on a data object (operand): a result of
the operation performed on thperand (which is in this case a copy of the original widentical
contents) is created (evaluated) and stored aptéscribed location. Many other operations are
defined on vectors and matrices.

Most commonly used arbinary operations, where an operation is performed on two
operands. A simple example is matrix summationgctviig implemented by the functionatsumO
that is declared imatrixop.h  as follows:

matrix matsumO(matrix m1,matrix m2,matrix *m3);

The functionmatsumO is used in quite a similar mannercpymatrix . The code below
may serve as an example:

Int dim1=5,dim2=7;

matrix A=NULL, B=NULL, S1=NULL, S2=NULL, S3=NULL, M
A=getmatrix(dim1,dim2); B=getmatrix(dim1,dim2);
A->m[1][1]=1.1; ... /* Set contents of A and B */
S2=getmatrix(1,1);

Sl=mat sunD(A, B, NULL); /* case 1*/

mat sunD(A, B, &S2); /* case 2 */

M= mat sunO(A, B, &B); /* case 3 */

The first two arguments ahatsumO are operands that are added together, in this case
matrices A and B, which were allocated with comsistdimensions as it is necessary for
summation. The third argument is the address ofntla&ix where the result is stored, but this
argument may be NULL (unspecified). After performsummation, the function returns the matrix
where the result is stored.

In case 1, the storage address is not specifiegtefitre the function creates a new
dynamically allocated matrix, stores the resultsofmmation in this matrix and returns it. In the
above case, the result is assigned to a matriablariS1. S1 should not be the basic handle or the
only pointer to an allocated matrix because in tlaise that matrix would be lost by assignment (i.e.
“hanging in space”, causing a memory leak because twould be no handle to the matrix and no
way to de-allocate it).

In case 2, the result of summation is stored tov8f¢h already held an allocated matrix.
Because dimensions of S2 were different than threedsions of the result of operation (which is in
the case of summation equal to the dimensions efampuls), the function first re-allocates the
matrix S2 and then stores the result to S2. Aslu8Z2ais returned, but the returned value (matrix
pointer) is not used in this case.

In case 3, the third argument is address of thenskoperand B, therefore the result (i.e. the
sum of A and B) is stored back to B. The returresilt (i.e. matrix B) is assigned to M, which is in

109



9. Appendix: Common types and related modules tUibJser’'s Manual

this case done only for demonstration. In the cdsummation, the result can be stored in one of
the operands without any side effects. The operaim be done in place — each pair of components
is first added together and then stored, and tleevaritten components are not needed any more.
The situation is different e.g. in the case of iplittation where components of each matrix are
used several times. Storing one component of thdtresould therefore change information needed
for operation. Many vector and matrix binary opienag are implemented in such a way that the
necessary temporary storage is automatically dkadce perform the operation correctly when the
result should be stored into one of the operandswever, allocation or de-allocation of the
auxiliary storage may significantly affect the eifincy, therefore such situations should be
avoided.

Equivalent operations as those described in thii@efor matrices are also defined for
vectors.

9.3 Stack Operations

Typestack is defined as a container type for different pggs In computer terminology,
the term stack is used for data structure whereelements may only be added (pushed) at its top
(after the last element currently on the stack) piclled (popped) from the top. In this library, the
stack type serves many different purposes (although /poghoperations are also implemented)
and is in general used asahle with variable number of elements. Elements may be pointers of any
type (e.g. vectors, matrices, pointers to double, goito numbers, etc.).

Thestack type is defined as follows:

typedef struct _stack {

int n,r; /* number of occupied / allocated pl aces */

intex; /* excess at reallocation */

void **s; /* table of pointers, counting START SWITH 1%
}* stack;

The type is adapted to pushing new elements atofhef the stack and getting them from
the top. Elements can also be removed from or teden the middle, but this is not as efficient.
The table of elements is automatically resized as necessary. If elements are added and theisable
full, it is enlarged, but the number of allocatddges is by excesg.(.)->ex ) greater than the
minimum necessary. This mechanism is implementeckfiiciency — in this way resizing is not
necessary every time new elements are added. Waiererts are deleted, the size of the allocated
space for the table is automatically reduced whemumber of unnecessary spaces becomes twice
smaller than the field...)->excess . Therefore, greater excess means on average ffiiciers
operation but also more unnecessary memory altmtadio a large excess will be chosen when it is
expected that a stack will hold a lot of elemeniahwill be frequently added or taken from the
stack.

110



9. Appendix: Common types and related modules tUibJser’'s Manual

Elements can be directlgccessed through the table of elemengs.)->s . Elements are
counted from 1. For examplst->s[4] refers to the fourth element of the stack st. Wednto
take care that we don’t attempt to access elemmtend the actualumber of elements on the
stack, which is obtained through.)->n . (...)->r is the allocated size of the element tgble)-
>s, i.e. the number of elements (pointers) for whiable is allocated. It can be equal or greater
than(...)->n .

Field(...)->ex is usually not used directly, but is used by fiord dealing with stacks in
order to determine when to reduce space for thmezie table or how much (excessive) space to
allocate when enlarging the table size. However figdd may be set directly (always to a positive
number) in order to change the operation modeettack and improve efficiency.

9.3.1 Creation, deletion, resizing and copying

Creation:
Stacks can be created by functioewstack , whose argument is excess (the number of
excessive places at resize), which is assigneuktfigld(...)->ex of the created stack:

stack newstack(int excess);

The above function does not allocate any spacéh®oelement table: this is done when the
first element is put on the stack (and in this s@amore space than necessary is allocated, namely
by (...)->ex more elements more). Sometimes it is known in adedow many elements will be
added to a stack at a time. In this case it isislEnt allocate element table for that many eletsien
as necessary, which can be done by the functemstackr . The first argument is excess (a
property of the created stack) while the secondiragmt is the number of elements for which
element table is allocated at creation:

stack newstackr(int excess,int r);

With the functionnewstackrn also the number of elements (...)->n is immediaselyto
the allocated size of the table, and elementsetreodNULL. It is caller's responsibility to actil
set the elements after this call.

Deletion:

There are various functions fdeletion of stacks and their elements. Functiispstack
del etes the stack without affecting its elements and may be used when elements on the stack are not
basic handles for the objects they point to (ileeré exist other pointers through which these
elements can be accessed and eventually de-alfipcatpointers are addresses of static variables or
fields of structures). The only argument to thisdtion is the address of the stack (i.e. its pojrite
be de-allocated. Stack pointer is set to NULL afierallocation.

Functiondispstackval deletes all elements of the stack and sets thdauof elements
of the stack...)->n to 0. Standard functioftee is used for de-allocation, therefore this function

111



9. Appendix: Common types and related modules tUibJser’'s Manual

can only be used when elements on the stack angesiements. The stack whose elements are
deleted is the only argument of the function.

Function dispstackvalspec acts similar as thalispstackval , except that the
function for deletion of an individual element gesified as the second argument. If this argument
is NULL then the standarilee function is used for de-allocation of elements.

Functiondispstackall de-allocates the stack together with all of iesmeénts. The only
argument is address of the stack, and the staffidiactionfree is used for de-allocation, therefore
the function is only suitable when elements of dteck are simple pointers. Stack pointer is set to
NULL after de-allocation.

Function dispstackallspec acts similar aglispstackall , except that a specific
function, which is specified as the second argumisntised for de-allocation of stack elements.
Declarations of these above mentioned de-allocdtinations are as follows:

void dispstack(stack *st);
void dispstackval(stack st);

void dispstackvalspec(stack st,void (*disp) (void * *));
void dispstackall(stack *st);
void dispstackallspec(stack *st,void (*disp) (void **));

When thefunction for deletion of elements is specified, it must usually be cast to the
appropriate type (which is a void function whoséyargument is a pointer to a void pointer), and
the function must be such that this is possiblehis library, most of the functions for de-allocat
of compound data objects are defined consisteritly this type. Use of this is demonstrated below
on the stack of matrix elements:

Example 10:

int i,j,dim=4,num=5;
stack st=NULL;
vector aux; /* auxiliary vector pointer for easier access */
st=newstack(2); /* allocate the stack */
for (i=1;i<=num;++i) {
aux=getvector(dim); /* create a new vector */

pushstack(st, aux); /* add the created vector on the top of the stack */
for (j=1;j<=aux->d;++j)
aux->Vv[j]=(double) 10*i+j; /* initialization o f vector components */
... I* Do something with the stack and its elements */
/* When the vectors are not needed any more, we de- allocate them together
with the containing stack: */
di spst ackal | spec(&(st), (void (*) (void **)) di spvector );

In the example below, a stack is created and fegtors are created and put on the stack.
Variableaux is used only as an auxiliary pointer (handle) tigto which the created vectors are
accessed when initializing their components.

After vectors are created and put on the stack; dam be manipulated in various ways.
Vectors on the stack can be referenced directhputhh the table of elemends>s , but this may
be a bit awkward because of the need of type cpgtimce elements of stack are declared as
pointers of undefined type rather than vector ps)t Whenever we need to access some vector on

112



9. Appendix: Common types and related modules tUibJser’'s Manual

the stack, it is therefore useful to assign itsfmito an auxiliary variable that is declared vect
The pointer can be accessed directly (e.gstass]i] wherei is the position of vector element
we want to address) or by the functistackel , which is somehow safer because the number of

elements is checked and invalid access prevented:
aux=getvector(st,i); /* get stack element */
if (aux!=NULL) {... /* do with a vector element wha tever necessary */ }

When not needed any more, the whole table of vedtode-allocated at once by calling

dispstackallspec . Functiondispvector  is passed as the second argument to be used for
deletion of individual vector elements, and is ¢aghe appropriate type.
Remark:

Creation of a vector and assignment of its poitdean auxiliary pointer variable can be
done in the same line as push it on the stack. i§ldEemething the language syntax enables, and the
difference is more or less aesthetic. The lattey iwdriefer on the level of source code but maybe

slightly less clear for sequential thinking:
pushstack(st, aux=getvector(dim)); /* create av ector and add it on the
top of the stack */

Resizing:
A stack can beesized by theresizestack  function, declared as follows:

void resizestack(stack *addrst,int excess,int n,voi d (*disp)(void **));

Argumentaddrst is the address of the stack to be resized. arguex@ess is the new
excess parameter of the stack (assigned to ith (fie)->ex ). If it is smaller than 1 then it is set
automatically according to the number of elemeAtgumentn specifies the requested number of
elements after the operation.nifis less than the current number of elements orstéek then the
added elements are set to NULL. If it is smalleentithe excessive elements are deleted (de-
allocated) by the functiodisp . If de-allocation function is not specified thegrallocation is done
by the standard functiofree , but this is correct only in the case when elemere simple
pointers (i.e. they don-t point to structures conitgy pointers to dynamically allocated memory). If
we don't want the excessive elements to be dedthaoc(e.g. when elements on stack are not basic
handles but auxiliary pointers), we must manuatyteese elements to NULL.

Copying:

A complete stack of elements can be copied to @nosttack by a single call to
copystackspec . As usual for copying operations, eventual costenft the target stacks are
overwritten. To perform the operation, we need dhads for deletion and copying of individual
elements, which are specified by the third andidlieth elements:

stack copystackspec(stack stl,stack *st2,void dispe I(void **), void *copyel
(void *,void **) );

Otherwise, the function acts in essentially theesananner as e.gopymatrix  described
in Subsection9.2.3. Additional arguments are required merelyabse in the case of copying

113



9. Appendix: Common types and related modules tUibJser’'s Manual

matrices, we know exactly what type of objects waldvith, while the type of stack elements is
indefinite and we must explicitly prescribe the weow elements are de-allocated or copied.

This complication falls away when we don’'t wantd®ate new objects that are copies of
the current elements of the copied stack, but ar@pt to have another stack containing the same
pointers, e.g. to order elements in a different wdnych is more convenient for searching. The
following function is used for this purpose:

stack copystack(stack st1,stack *st2);

Let us stress again that the target stack will agsitain exact values of pointers on the
original stack rather than poiners to dynamic cepdé stack elements as it is the case with
copystackspec . Therefore, we may not e.g. de-allocate elemeffitboth stacks, because
elements are the same and each pointer may bdodatatl only once. What concerns the stack
itself (without the contents)copystack acts in a similar manner thacopymatrix  or
copystackspec

9.3.2 Element access

Stacks are intended as container objects for any kingaifter objects, therefore their
elements are declared as pointers of indefinite,tyje.void * . Elements of the stacks can be
accessed directly (which is sometimes computatipmabre efficient), but in this case we may
need to useype casting in order to tell the compiler what type of objea deal with.

Let us refer toExample 10and assume that we want to set the second comtpohéme
third vector element of the stask to 9.28. We can do this by direct access to tlosovelement in
the following way:

((vector) (st->s[3]))->v[3]=9.29;

Vector components are addressed through the fiel}>v and stack components are
addressed through the fie{d.)->s . However, elements on the stack are of typal * and
without a type cast, operater (combination of dereferencing and field selectiislf would be
illegal because what is pointed to by the stackneld is simply a memory location that does not
have any structure for the compiler. By type cagifstating the type in parentheses before the
reference to the object) we provide (in a way esgbunambiguous information about the structure
of the pointed object through its ordered typeecfor in this case, see&ection 9.2 for
declaration). The reference to a given elemenhefatray (...)->v is therefore exactly defined, and
vector component is set as intended. Type cassiogly provision of information for the compiler.

It does not give rise to any additional machinerapens, therefore there is no reason for efficgenc
concerns. On the other hand, casting may be damgevben used without the necessary caution.
For example, if we actually had matrices on thekssh but would cast them to vectors and assign

! Here we mean objects of tygeack as defined in this library, not stacks as compteem. As explained before,
some features of tretack type compliy with the common definition of stadkscomputer terminology, but its use in
the library extends beyond that.

114



9. Appendix: Common types and related modules tUibJser’'s Manual

components as above, this would result to a diséstey likely to program crash, and certainly to
unexpected behavior). Compiler will not warn absuth improper use of stack elements because
there is no way to detect.itlt is sole responsibility of the user of a stdoktreat its elements
correctly, and most importantly, the user must khich is the type of the elements n a sfack

Access to stack elements must be done cautiousig. Bust be sure that the sequential
number of accessed element does not exceed theendrekements that actually are on the stack,
which can be checked through the fiéld)->n ., e.qg.

int which;

if (which <= st->n && which>0) {
aux=st->s[which];
... I* Do something with the element */

}

The function

Stack elements (pointers) can be obtained by thetifun stackel , which checks the
validity of element index and returns a NULL pointéhen the index is out of bounds. By use of
this function, thef statement of the above code would look like this:

if (aux=stackel(st,which)) {
... I* Do something with the element */

}

Sometimes one may want to use the functishack, which returns a given element of the
stack, counted backwards from the end of the d@gjument 1 means the last element, argument 2
one before the last, ett.)

There are several ways to add elements to the stackmove them from it. We have
already mentioned thaush andpop operations, which are the most efficient and adeélament at
the end or take the last element from the stac#t (aturn its pointer):

void pushstack(stack st, void *el);
void *popstack(stack st);

! There is maybe a theoretic chance to detect sasbscof improper use, but only by tracking the camig analyzing
what it does. Compilers don’t have such abilities.

2 In object oriented languages such as C++, it $éeedo achieve more control on this through usteofplate classes.
In particular, it is easier to distinguish betwestack of vectors, stacks of matrices, etc., and firevent e.g. vector
operations on matrix elements of a stack. Suchrabntechanisms can be established explicitly irb@, this would
either require some additional effort in cumbersaoding or additional overheads in resources becatisdditional
checks). In the case of stacks, library implemémadpts for plain solution that requires some mautvhen using the
functionality.

® Functionsstackel  andnstack could be joined, e.g. by negative arguments imppsbunting backwards. They
are implemented separately in order to reduce pitissiof mistakes.

115




9. Appendix: Common types and related modules tUibJser’'s Manual

Function insstack  inserts an element at a prescribed position dpdcify the last
argument. If the position exceeds (by more thath&)number of elements currently on the stack,
the intermediate positions are filled with NULL pteérs. Otherwise, elements after and including
the specified position are shifted by one placeatolw the end of the stack. If necessary, the
element table is re-allocated to fit the new stizk.

Opposite operation is element removal, which isfquared by delstack . The last
argument specifies which element to take from theks The removed element (pointer) is returned
by the function, and all elements after the spedifplace are shifted one position towards the
beginning of the stack. If the specified positisrout of bounds then a NULL pointer is returned.
Otherwise, the number of elements (fiéld)->n ) is reduced by one.

An existing element of the stack can be replacedabgther element by the function
setstack . Function returns the replaced element that watherspecified position before. If the
position is larger than the number of elementssksta enlarged, intermediate positions are filled
with NULL pointers and NULL is returned. The deser functions are declared as follows:

void insstack(stack st,void *el,int place);
void *delstack(stack st,int place);
void * setstack(stack st,void *el,int place);

9.3.3 Other operations

There are a number of useful operations definedstiacks such as sorting, searching, and
collective operations such as printing of all elaise Because stacks can contain any type of
(pointer) elements, these operations rely on sigatién of element level operations. For example,
sorting and searching operations requires spetiditaf element comparison, which defines the
relation “greater, equal or smaller” between twengdnts:

int findstack(stack st,void *ptr,int from, int to,i nt cmp(void *p1,void
*p2));
void gsortstack(stack st,int cmp(void *p1,void *p2) );
int findsortstack(stack st,void *ptr,int from, int to, int cmp(void *p1,void
* .
p2));

Functionf i ndst ack searches for the first element of the statkthat is equal (in the
sense defined by the function argumemip) to the specified elemeptr , and returns its position
or 0 if the appropriate element could not be foandhe stack. The search is performed only among
elements on positions startingfedm and ending ato , where the value 0 dfom means the first
and vliue 0 ofto means the last argument (in the case of excessaudb, these arguments are
internally corrected).

The functionfindsortstack operates in a similar manner, except that elemamthe
stack must be sorted in ascending order with respemp for proper operation. Taking advantage
of sorting means much faster operation, which &ulsespecially when number of elements is very

116



9. Appendix: Common types and related modules tUibJser’'s Manual

large. If there are more elements that are equl mspect t@mp, an arbitrary position of one of
them is returned

Functiongsortstack  rearranges elements of a stack in such a waythbgtare ordered
in ascending order with respect to tleenparison function cmp.

The comparison function must be provided by the user to define the refatichich may be
defined in different ways for some types of datg.(éor strings, the comparison may be defined in
such a way that small and capital letters arerdjsished or not). The agreement is that the functio
must return -1 if the first argument is smallerrttihe second, O if arguments are equal and 1 if the
first argument is greater than the second.

Collective operations are performed on all elements of the stack anldidiece.g. printing of
elements. A function that performs an operation aosingle element must be specified. For
example, the following function prints to a fileraplete information about a stack together with
contained elements:

void fprintstack(FILE *fp,stack st,void (*fprintel) (FILE *fp,void *el));

Argument fprintel specifies how to print contenfsaa individual elements. If elements of the stack
are vectors (custom typector ) then the function may be used in the followingywa

FILE *fp;
stack st;
... I* set elements of st, open the file fp... */
f print st ack(fp, st, (void (*) (FILE *,void *)) fprintvector);
Note the type casting applied to the functipmintvector , which is used to print

contents of an individual vector, in order to coynith the requested type fgrintstack

9.3.4 Index tables

Index tables are constructs which are in a waylaimo stacks, but they contain elements of
the typeint (sign integer type) rather than pointer, i.e. thap carry only integer elements. The
reason for definition of a special type for dynartables of integers while stack carrying integer
pointers could do the same job is that use of spacdiays of integers is more efficient, and effiti
is usually very crucial when e.g. tables of indiggs needed. The type implementing dynamic
index tables (tables of integers in geneiradltab is defined as follows:

typedef struct _indtab {
intn, /* num. of elements */
r, [* allocated space */

1 If we need e.g. the position of the first of sudaments (which is not so often), we can perforsinaple addition
check after the function call.

117



9. Appendix: Common types and related modules tUibJser’'s Manual

ex, /* excess allowed in reallocation */
*t; /* table of elements, counting STARTS W ITH1*
}* indtab;

Similar operations as for stacks are defined fdeintables.

9.4 Error reporting @

An extensible mechanism for error reporting is iempénted in the library. In its basic
variant, the mechanism enables printing of erral @arning messages to standard output (usually
to the terminal) and to a pre-defined error fileidg program execution. The mechanism can be
arbitrarily extended (e.g. by launching messagesugiomized windows and message boxes, or by
searching for help tips related to message contmisshowing them) without changing how the
error reports are triggered. The mechanism provédesiform way for reporting errors throughout
a program that uses the library.

The following is an example of reporting an errathim a particular function:

#include <er.h>

errfuncl(l, “testfunction”);

sprintf(  er s(),"This is a test error message. Unexpected value (%Q)
occurred.\n”, 3.33);

sprintf(  er s(),”Since this is only a test, the value was set ju st like
that.\n");

errfunc2();

Three utilities declared ier.h were used for generating an error report, nantayntacros
errfuncl  anderrfunc2  and the functiorers . The macros initialize and finalize the error
report.

The initialization macrerrfuncl  stores the relevant data for the report, i.eether code
and the name of the function in which the erroorepas launched (which must be provided by the
caller as arguments of the macro) and the file larel number of the point where the macro is
called (this information provided through pre-defincompiler directives and makes location of
error in the source code easy). It also perfornmesother operations, e.g. checks the message
buffer and eventually empties it.

Custom error report must be written to a stringfdrufvhich is returned by the function
ers(). This function takes care that the returneidtpr is always at the end of eventual previously
written contents (such as in the above case whetimgvon the buffer was performed twice) and
that at minimum a given (pre-defined) amount ofcgpia available in the buffer.

118




10. Future plans IOptLib User's Manual

COOOOOOO®

For information how to extend the functionalityefor reporting system, see the header file
er.h and the error reporting moduwe.c .

9.5 Other Libraries@

There are many developers around who are doingraevéul job by developing numerical
libraries that can provide useful tools to the glolesearch community. Thanks to these people,
research and also a large deal of high tech odetwenmercial community can benefit from cheap
and still reliable enough tools that significardiljeviate their development. Here we would like to
point out that such work has an invaluable impacscientific and technological development and
in this way strongly promotes development of nagslthat are constantly improving the quality of
life in our society.

Some of these libraries are also used@ptLib:

* Meschach — a linear algebra library

* Mersenetwister random generator

» For research purposes that serve developmentfitbinary, theFSQP algorithm is
used. Since this is a commercial algorithm, itas available to users ¢OptLib; for
users who would like to have a powerful non-linpesgramming engine integrated
with 10ptLib, purchase of the library can be arranged withdisributor, and
interface modules fdiOptLib can be provided that arrange integratiofr 8QP with
the library.

»  SolvOpt algorithm for nonlinear programming

The author of this library gratefully acknowledgég contribution of developers of these
libraries to the existence tdptLib at its present form.

10 FUTURE PLANS §§

119



11. To do (for developers ) IOptLib User's Manual

11 TO DO (FOR DEVELOPERS # )

11.1Test utilities

Check the formula (27) on restricted region caistrwhich works on basis of unit ball
constraint defined on transformed co-ordinatessuioh a way that transform matrix is randomly
generated. Check also weighting functions derivedchfgeneric functions of one variable applied to
vector norm in affine transformed co-ordinateshia $ame way!

Implement test functionsfrom global optimization community (described envtbptglob)!

11.2Questions to answean

11.3mplementation plansﬁ

11.3.1Prevention of successive repetition of analyses

In anfunccountnorepeat (moduoleoptbas.c ), implement possibility of calculating
only the missing part of the response, if one pastalready been calculated at given parameters.

Implement an analysis function that stodegan arbitrary number of) last results and uses
these results when an analysis is called at paeasfetr which response is stored.

Proposed implementation:This analysis function would take an array of fpointers (say
cd) as definition data. The meaning of the first ¢ghmeould in principle be the same as for
anfunccountnorepeat . The fourths pointer would contain address of kstagntaining the
stored points. The function would check on thiglstior a point with the same parameters as the
function was called with, put address of this pdifitound) to cd[3] (otherwise, put the last point
cd[3]) and at the same time shift other points twolsa the back, and perform
anfunccountnorepeat with definition datacd .

Usage:this would be very useful where one might warstere a number of points, e.g. for
later conversion to penalty function in a simplesthod.

120



11. To do (for developers ) IOptLib User's Manual

11.3.2Successive approximations building blocks

Opombe:
Dodati analysispoint vsaj eno Stevilko za dodate¥ni faktor (tako ali tako bi rabil dve celi
in dve realni dodatni Stevili — zaradi tabel.

» Funkcije zazagetni vzorec (recimo I—o). Parametri:Xo, h, hyec . Smotrno:
Najprejn+1 vzorcev (lin. Namesto kvadrat. Aproks.)

» Funkcije zaaproksimacijo zaéetnega vzorca(morda kar povezano s funkcijo za
generacijo vzorca). Biti mora 100%.

» Funkcijo zageneracijo stabilizacijskega vzorca glede na trustegion iz trenutne
aproksimacijske funkcije (za kvadratno in lineafaokcijo).

* Funkcijo za generacijo eksplicitne aproksimacije implicitne (npr. MLS ->
quadratic)

* Funkcijo za definicijo analize z dodatnimimejitvami za restricted region (v
optbas.c)

» Funkcijo zakombinacijo analiz , da lahko dodamo omejitve glede dosega koraka.

Pri omejitvi koraka je potrebno dodati moZnost @har afine transformacije z omejitvijo z
enotsko kroglo.

Transformacije parametrov: smotrno bi bilo implementirati linearne in omeghe
transformacije!!!

11.3.2.1Priority

e Sampling function
0 Make a simple one to act as an extensible scelgtgn random first, then
with affine transform added, and maybe much latégh wolving minimal
potential problem (initial guess with transformedituball random, opt.
problem with transformed co-ordinates for particetdentialand restricted
region constraint))
» Approximated analysis functions linear / quadratic LS / MLS
o0 Implement & incorporate weighting functions
» Affine transform of the problem
o0 Work out rules for application of transform (e.g. whendirect/inverse
transform is used) for a) sampling, b) restricteteps constraint
implementation and c) approximation (if applicable)

121



11. To do (for developers ) IOptLib User's Manual

» Checking scheme— very simple test case, like 2D quadratic obyectl linea
constraints

» Correct formulas for sampling region, restricted sep constraint and weighting
functions (with gradients of functions of transformed coioedes)! Correct
formulas are in linapprox.doc in the appendix (deuhecked).

11.3.Miscellaneous

122



References

References:

[1] 1. GreSovnik,Smplex Algorithms for Nonlinear Constraint Optimization Problems,
revision O, technical report, 2007.

[2]
3]
[4]

[5] Igor GreSovnik: Linear approximation with regtikation and moving least squares,
revision 1, technical report, 2010.

[6]
[7]
(8]
9]
[10]
[11]

[12] 1. GreSovnik. Optimisation Shell Inverse”, electronic document at
http://www.c3m.si/inverse/ maintained by the Centre for Computational Gantim
Mechanics, Ljubljana.

[13] I. GreSovnik. Download page for Inverse’, electronic document at
http://www.c3m.si/inverse/download/

[14] I. GreSovnik. Tnverse manuals’, electronic document at
http://www.c3m.si/inverse/doc/manmaintained by the Centre for Computational
Continuum Mechanics, Ljubljana.

123



References

[15] 1. GreSovnik. Quick introduction to optimization shell Inverse”, electronic document at
http://www.c3m.si/inverse/doc/other/index.html

[16]
[17]

[18] I. GreSovnik. A General Purpose Computational Shell for Solving Inverse and
Optimisation Problems - Applications to Metal Forming Processes’, Ph.D. thesis,
available ahttp://www.c3m.si/inverse/doc/phd/index.html

[19] R. Fletcher. Practical Methods of Optimizati@econd edition). John Wiley & Sons,
New York, 1996.

[20]
[21]
[22]
[23]
[24]
[25]
[26]

[27] P. Michaleris, D. A. Tortorelli, C. A VidalTangent Operators and Design Sensitivity
Formulations for Transient Non-Linear Coupled Problems with Applicationsto
Elastoplasticity, Int. Jour. For Numerical Methods in Engineeringl. 87, pp. 2471-
2499, John Wiley & Sons, 1994.

(28]
[29]
[30]
[31]
[32]

124



Sandbox

12 SANDBOX
y
&
X X-S
) éz
€
X e

X1

%
N

€

125



Sandbox

12.1Storage of chapters that are in the process of sawn

12.1.1Agreements for use of linear (affine) maps

Remark: this is an old version @ection 3.1.3

In the 10ptLib, linear (in fact affine) transformase used for several purposes which include:
» sampling of response functions in a given domaihjciv can be obtained by
transforming a unit ball
+ definition of a restricted region constraint, whéte constraint function that ensures
that the solution is included in the unit ball idgected to co-ordinate transform
+ definition of weighting functions, which are obtethby co-ordinate transforms of
rotationally symmetric functions scaled for a uratl

The above mentioned functions and procedures arentist easily defined and performed

when the unit ball centered in the co-ordinate iorig the domain of interest. We define the
transformF such that

X=F(X)=A7% +s, (141)
or
X=F*(x)=A(x~-s). (142)

Affine transformF transforms a unit ball centered in the co-ordinatigin to an hyper
ellipsoidal region with a center of mas@igure 2). In optimization methods that utiliaecsessive
approximations of the response, such domains areeoiently used for sampling of the response
and as restricted region on which the approximatexblem is solved in the current iteration,
therefore also the sampling weights are defineduich a way that influence of samples on the
approximation is significant in the domain of trere shape, centered around the corresponding

samples.

The (closed) unit ball is defined as
u={x:|x],=<1}. (143)

The ellipsoidal domain obtained by transformatidthe unit ball byF is therefore

126



Sandbox

Ue ={ x| F (%), =1} (144)

Figure 12: Affine functionF that maps n unit ball into an ellipsoidal domaémtered
arounds.

Sampling is typically done such a way that the specifiechbarms of random points with
uniform probability density over volume of the ubéll are generated, s&y. These points are then

transformed to; by

x, =F(%,). (145)

In most cases it is more convenient that the sangpdbints are uniformly distributed over
volume in the unit ball rather than the transforre#lipgsoidal domain, which can be very elongated.
This is even more obvious when we obtain the sasrpjesolution of the minimal particle potential
problent. If the minimal potential problem was used on élisoidal domain that is expressively
elongated along one main axis, we would obtain atnumiform distribution along this main axis
and a meaningless zigzagging in other directionekeM/we want to include previously chosen
sampling pointsyk in the minimal particle potential problem (in orde avoid oversampling of
parts of the domain), these points are first tramséd by inverse transforms into

Y = F (yk) . (146)

! This ensures that the particles are as far away frach other as possible and they are not comtedtin any part of
the sampling domains, which can happen by randonplsag.

127




Sandbox

Then the necessary numbarof X.

are obtained from randomly distributed pointshe t

unit ball (say>“<i(°)) from solving the minimal particle potential prebi involving also the points
¥, PointsX; are then transformed ipby F.

Restricted region constraints are defined by transforming independent varialbés
constraint function that correspond to limiting tdemain to the unit ball. For optimization
purposes, the unit ball constraint is conveniedéfined as

T =|x|,” <1. (147)

2

The corresponding constraint function is
o (%) =]%],” -1=x"%-1. (148)

If we want to limit the domain of optimization tbe ellipsoidal region obtained from the
unit ball byF, we must apply, to variables transformed by ™ because this function transforms

the domain of interest to the unit ball (Figure ®)erefore, the constraint function correspondmng t
the restricted region constraint is

¢ (x)=g (F’l(x)). (149)

According to (28) and taking into account (36) &8d), gradient ot; is:

X P X=A(X-X,) . (150)

1%,

Because sampling is performed inside the ellipsaldenain obtained by application Bfto
the unit ball, it seems reasonable that contourseaghting functions corresponding to individual
samples will have similar shapes as this domain,willl be centered around the corresponding
samples. Therefore we can use a similar idea faghtiag functions as for the restricted region
constraint function. We define a template weightfogction w, (f() with concentric contours,
which decays considerably on the distance 1 froenaifigin. Actual weighting functions are then
obtained by applying the template weighting funetio co-ordinates transformed I8y, whereF;

is a function that transforms the unit ball to alipsoidal domain centered around the
corresponding sampling point. For sampling pajrihe corresponding function is

X

O,c (x) =A™

F(%)=A7%+x,. (151)

The weighting function corresponding to the sanxpis then

128



Sandbox

W (x) = w, (Fi'l(x)). (152)

Because the template weighting function has conicestintours, it can be defined by a function of
a single variablev(x), i.e.

w, (%) =w( %], ). (153)
The weighting function corresponding to the sangppiointx; is therefore

Wi(X):W(" E'l(x)"z):W(A(x -1,)). (154)

Functionw needs to be defined only for non-negative argumaéfe usually require that gradient
of w, is continuous in the co-ordinate origin, which me#hatw must have a zero derivative in 0.

Commonly used forms faw are Gaussian and reciprocal polynomial (Figure 3):

1 (155)
=——,p=2,3,4,..
=P

Figure 13: Weighting functions of Gaussian fomg(r) and reciprocal polynomial form
W4(r).

129



Sandbox

According to (28) and taking into account (42) dgeatlof the weighting functions are:

00 (x) = w (%], )A’lﬁ; R=A(X-x,) . (156)

130



